• Title/Summary/Keyword: mercury intrusion

Search Result 69, Processing Time 0.024 seconds

Mechanical Properties of Ultra High Strength Concrete Using Ternary Blended Cement (3성분계 혼합시멘트를 사용한 초고강도 콘크리트의 역학적 특성)

  • Kim, Jin Bong;Shin, Ki Su;Park, Ki Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.56-62
    • /
    • 2012
  • The results presented in this paper form part of an investigation into the optimization of a ternary blended cementitious system based on ordinary Portland cement (OPC)/blast furnace slag(BFS)/fly ash(FA) for the development of ultra high strength concrete. Concrete covering a wide range of BFS/FA blending proportions were investigated. Compressive strength at the ages of 3, 7 and 28 days for concrete specimens containing 0%, 10%, 20% and 30%FA along with 0%, 30%, 40% and 50%BFS as partial cement replacement at a water-binder ratio of 0.18 were investigated. Tests on porosity and pore size distribution were conducted using mercury intrusion porosimetry. The results show that the combination of FA10 and BFS30 can improve both short- and long-term properties of concrete as results of reducing of pores larger than 50nm.

Simplified Carbonation Model Considering Ca(OH)2 Solubility and Porosity Reduction (수산화칼슘 용해도와 공극률 감소를 고려한 간략화 된 탄산화 모델)

  • Lee, Yun;Kwon, Seung-Jun;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.128-138
    • /
    • 2015
  • Carbonation is one of the most critical deterioration phenomena to concrete structures exposed to high $CO_2$ concentration, sheltered from rain. Lots of researches have been performed on evaluation of carbonation depth and changes in hydrate compositions, however carbonation modeling is limitedly carried out due to complicated carbonic reaction and diffusion coefficient. This study presents a simplified carbonation model considering diffusion coefficient, solubility of $Ca(OH)_2$, porosity reduction, and carbonic reaction rate for low concentration. For verification, accelerated carbonation test with varying temperature and MIP (Mercury Intrusion Porosimetry) test are carried out, and carbonation depths are compared with those from the previous and the proposed model. Field data with low $CO_2$ concentration is compared with those from the proposed model. The proposed model shows very reasonable results like carbonation depth and consuming $Ca(OH)_2$ through reduced diffusion coefficient and porosity compared with the previous model.

Pore Characteristics of Stainless Steel Slag AOD Blended Cement Pastes by Carbonation Curing (스테인리스 스틸 슬래그 AOD 혼입 시멘트 페이스트의 탄산화 양생에 의한 공극특성)

  • Hwang, Chul-Sung;Park, Kyoung Tae;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.90-96
    • /
    • 2018
  • In this study, the mechanical and micro-structural change of cement pastes incorporating Stainless-Steel Slag Argon Oxygen Decarburization Slag (STS-A) containing ${\gamma}-C_2S$ as a carbon capture materials were investigated with carbonation curing condition. ${\gamma}-C_2S$ is non-hydraulic, therefore does not react with water. But ${\gamma}-C_2S$ has a reactivity under carbonation curing condition with water. The reaction products fill up the pore in pastes. The microstructure of STS-A blended cement pastes could be densified by this reaction. The pore structure of cement pastes incorporating STS-A was measured using mercury intrusion porosimetry (MIP) after carbonation curing ($CO_2$ concentration is about 5%). Also the fractal characteristics were investigated for the effect of carbonation curing on the micro-structural change of paste specimens. From the results, the compressive strength of carbonated specimens incorporating STS-A increased and pore-structure of carbonated paste is more complicated.

An Experimental Study on Relation between Chloride Diffusivity and Microstructural Characteristics for GGBS Concrete (슬래그 미분말 혼합 콘크리트의 공극구조와 염화물 확산계수와의 관계에 대한 실험적 연구)

  • Kim, Tae-Sang;Jung, Sang-Hwa;Choi, Young-Cheol;Song, Ha-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.639-647
    • /
    • 2009
  • In order to evaluate the durability of reinforced concrete structures under chloride attack from sea water and frost damage, it is important to analyze both the microstructural characteristics of concrete and its diffusion resistance of concrete against chloride ingress. In this study, a relation between micro-pore structures of concrete obtained by the Mercury Intrusion Porosimetry and accelerated chloride diffusivity as well as long term chloride diffusivity were studied for ground granulated blast furnace slag(GGBS) concrete. Different water-cement ratio of 40, 45, 50% and different unit cement concrete of 300, 350, 400 or 450 kg/$m^3$ of the GGBS concrete along with OPC concrete were used and freeze and thawing, and the change in diffusivity and microstructure were observed for both GGBS concrete and damaged GGBS concrete due to rapid freezing and thawing.

Effects of CNT Additions on Mechanical Properties and Microstructures of Cement (CNT 첨가량에 따른 시멘트의 역학성능 및 미세구조의 영향)

  • Oh, Sungwoo;Oh, Kyeong-seok;Jung, Sang-hwa;Chung, Wonseok;Yoo, Sung-won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.162-168
    • /
    • 2017
  • Carbon nanotube(CNT) is one of the promising construction materials to produce concrete with high strength and durability by adding in the concrete mixtures from various researches. Also, its superior heat conductivity can be one of the options to develop self-heating concrete. In this research, the fundamental study was conducted to investigate mechanical properties and microstructures of cement pastes and mortars by strength tests and porosity measurement with several CNT additions, which were 0 wt%, 0.115 wt%, 0.23 wt% and 0.46 wt% of CNT-cement ratio. Compressive and flexural strength test were conducted at 3, 7 and 28 days, and pore characteristics were investigated by mercury intrusion porosimetry. SEM-EDS and Thermogravimetric analysis(TGA) were conducted to prove the hydration product types and CNT dispersion in the cement matrix. As a result, even though high amount of CNT additions were caused worse performance, mixtures with 0.115 wt% of CNTs developed the similar performance with plain mixture.

An Experimental Study on the Effect on Strength and Internal Structure for UHPC by Silics Fume Replacement Ratio (실리카 퓸의 첨가량에 따른 UHPC의 강도와 내부조직에 미치는 영향에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.765-768
    • /
    • 2008
  • Silica fume is a very important gradient in UHPC(Ultra High Performance Concrete) and its amount is normally over 25% of cement(wt.%). But we surely need to comprehend the influence of the amount of silica fume on the UHPC. In this paper, it was investigated how the amount of silica fume influence on the properties such as fluidity, compressive strength, elastic modulus, and flexural strength. Furthermore, it was examined the internal micro structure on UHPC through the test of SEM and MIP. In results, If we properly use silica fume in UHPC, fluidity and strength of UHPC was increased. It can be ascertained through the test of MIP that silica fume effectively increased density of UHPC by posolanic reaction and acting as filler. Especially, In case of Cement to silica fume ratio$0.1{\sim}0.25%$, we can be concluded that UHPC has similar to mechanical property.

  • PDF

Fracture behavior and pore structure of concrete with metakaolin

  • Akcay, Burcu;Sengul, Cengiz;Tasdemir, Mehmet ali
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.71-88
    • /
    • 2016
  • Metakaolin, a dehydroxylated product of the mineral kaolinite, is one of the most valuable admixtures for high-performance concrete applications, including constructing reinforced concrete bridges and impact- and fire-resistant structures. Concretes produced using metakaolin become more homogeneous and denser compared to normal-strength concrete. Yet, these changes cause a change of volume throughout hardening, and increase the brittleness of hardened concrete significantly. In order to examine how the use of metakaolin affects the fracture and mechanical behavior of high-performance concrete we produced concretes using a range of water to binder ratio (0.42, 0.35 and 0.28) at three different weight fractions of metakaolin replacement (8%, 16% and 24%). The results showed that the rigidity of concretes increased with using 8% and 16% metakaolin, while it decreased in all series with 24% of metakaolin replacement. Similar effect has also been observed for other mechanical properties. While the peak loads in load-displacement curves of concretes decreased significantly with increasing water to binder ratio, this effect have been found to be diminished by using metakaolin. Pore structure analysis through mercury intrusion porosimetry test showed that the addition of metakaolin decreased the critical pore size of paste phases of concrete, and increasing the amount of metakaolin reduced the total porosity for the specimens with low water to binder ratios in particular. To determine the optimal values of water to binder ratio and metakaolin content in producing high-strength and high-performance concrete we applied a multi-objective optimization, where several responses were simultaneously assessed to find the best solution for each parameter.

Evaluation on the Deterioration and Resistance of Cement Matric due to Seawater Attack (시멘트 경화체의 해수침식에 의한 성능저하 및 저항성 평가)

  • 문한영;이승태;김홍삼
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2001
  • Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of 5 types of cement matrices. From the results of compressive strength and length change, it was found that blended cement mortars due to mineral admixtures, were superior to portland cement mortars with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the peak intensity ratio of low heat portland cement(LHC) paste, in portland cement pastes, had better results, and so did that of blended cement Paste. Pore volume of pastes by mercury intrusion porosimetry method demonstrated that total pore volume of ordinary portland cement(OPC) paste had a remarkable increase comparing with that of other pastes. In case of immersion of artificial seawater, the use of ground granulated blast-furnace slag and fly ash, however, showed the beneficial effects of 56% and 32% in reduction of total pore volume, respectively.

Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder (고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작)

  • Kim, Chae-Hoon;Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.

Hydration and Mechanical Properties of High-volume Fly Ash Concrete with Nano-silica (나노 실리카를 혼입한 하이볼륨 플라이애시 콘크리트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Lee, Geon-Wook;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.112-119
    • /
    • 2022
  • Recently, as carbon neutrality has been important factor in the construction industry, many studies have been conducted on the high-volume fly ash concrete. High volume fly ash concrete(HVFC) is usually made by replacing more than 50% of cement with fly ash. However, HVFC has a disadvantage of low compressive strength in early age. To overcome this shortcoming of HVFC, improve this, interest in techonolgy using nanomaterials is increasing. Nano silica is expected to improve the early age strength of HVFC as a pozzolanic material. This study investigated the effect of nano silica on the early hydration reaction and microstructure of HVFC. The early hydration reaction of HFVC was analyzed through setting time, isothermal calorimeter, compressive strength and thermal weight analysis. In addition, the microstructure of HVFC was measured by mercury intrusion porosimetry. From the test results, it was confirmed that nano silica increased the early age strength and improve the microstructure of HVFC.