DOI QR코드

DOI QR Code

Effects of CNT Additions on Mechanical Properties and Microstructures of Cement

CNT 첨가량에 따른 시멘트의 역학성능 및 미세구조의 영향

  • 오성우 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 오경석 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 정상화 ((재)한국건설생활환경시험연구원 건설기술연구센터) ;
  • 정원석 (경희대학교 토목공학과) ;
  • 유성원 (가천대학교 토목환경공학과)
  • Received : 2017.09.25
  • Accepted : 2017.10.10
  • Published : 2017.11.01

Abstract

Carbon nanotube(CNT) is one of the promising construction materials to produce concrete with high strength and durability by adding in the concrete mixtures from various researches. Also, its superior heat conductivity can be one of the options to develop self-heating concrete. In this research, the fundamental study was conducted to investigate mechanical properties and microstructures of cement pastes and mortars by strength tests and porosity measurement with several CNT additions, which were 0 wt%, 0.115 wt%, 0.23 wt% and 0.46 wt% of CNT-cement ratio. Compressive and flexural strength test were conducted at 3, 7 and 28 days, and pore characteristics were investigated by mercury intrusion porosimetry. SEM-EDS and Thermogravimetric analysis(TGA) were conducted to prove the hydration product types and CNT dispersion in the cement matrix. As a result, even though high amount of CNT additions were caused worse performance, mixtures with 0.115 wt% of CNTs developed the similar performance with plain mixture.

탄소나노튜브는 고강도, 고내구성 콘크리트의 생산을 위한 새로운 재료 중 하나로 여겨지며, 많은 연구자들에 의하여 연구되고 있다. 탁월한 열전도도는 향후 자가발열 콘크리트의 개발에 필수적이며, 이 연구에서는 다양한 목적을 갖는 콘크리트의 개발을 위한 역학적 특성 및 미세구조 분석을 실시하였다. CNT 첨가량은 시멘트 중량대비 0.115, 0.23, 0.46wt%로 하였다. 압축강도/휨강도 시험은 재령 3, 7, 28일에 실시하였으며, 공극률은 MIP 시험을 통해 실시하였다. CNT 분산성 및 수화생성물 분석을 위하여, SEM 분석 및 열분석을 실시하였다. 그 결과, CNT 첨가에 따른 역학성능은 다소 감소하는 경향을 나타내었으나, 0.115wt% 첨가한 경우 플레인 배합과 동등 수준의 결과를 확인할 수 있었다. 향후, 기존 콘크리트와 동일한 역학성능을 보유한 CNT 첨가 배합의 개발을 통한 발열성능 확보가 가능할 것으로 기대된다.

Keywords

References

  1. Chaipanich, A., Nochaiya, T., Wongkeo, W., and Torkittikul, P. (2010), Compressive strength and microstructure of carbon nanotubes-fly ash cement composites, Materials Science and Engineering A, 527, 1063-1067. https://doi.org/10.1016/j.msea.2009.09.039
  2. Cho, I. H. and Sung, C. Y. (2008), Hydration Reaction Properties of Concrete With Binders and Admixtures, Journal of the Korean Society of Agricultural Engineers, 50(2), 27-34. https://doi.org/10.5389/KSAE.2008.50.2.027
  3. Colins, F., John, L., and Duan, W. (2012), The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-opc paste mixtures, Cement & Concrete Composites, 34(2), 201-207. https://doi.org/10.1016/j.cemconcomp.2011.09.013
  4. Ha, S. J. and Kang, S. T. (2016), Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs, Journal of the Korea Concrete Institute, 28(1), 67-74. https://doi.org/10.4334/JKCI.2016.28.1.067
  5. Ha, S. J., Kang, S. T., and Lee, J. H. (2015), Strength of CNT Composites with Different Types of Surfactants and Doses, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(2), 99-107. https://doi.org/10.11112/jksmi.2015.19.2.099
  6. Ipperico, M., Ferro, G., Musso, S., Tulliani, J. M., and Tagliaferro (2009), Calcestruzzo autocompattante nanorinforzato (CNTSCC): proprieta meccaniche e potenzialita, A. Atti del $20^{\circ} Convegno Nazionale del Gruppo Italiano Frattura (IGF), Torino, Italy, 103-112.
  7. Jo, B. W., Kim, S. K., Choi, J. S., Kim, D., and Kim, T. Y. (2013), Basic Study by Multi-Walled Carbon NanoTube(MWCNT) for Radiation shielding Concrete, Korea Society of Civil Enginerrs, 10, 16-18.
  8. Kang, S. T. and Park, S. H. (2014), Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites, Journal of the Korea Concrete Institute, 26(1), 63-70. https://doi.org/10.4334/JKCI.2014.26.1.063
  9. Kang, S. T., and Park, S. H. (2014), Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites, Journal of the Korea Concrete Institute, 26(1), 63-70. https://doi.org/10.4334/JKCI.2014.26.1.063
  10. Kim, S. K., Kwark, J. W., Kwahk, I. J., Choi, E. S., and Lee, J. W. (2014), Study into Mortar Quality Mixed with CNT, The Korea Institute For Structural Maintenance and Inspection, 18(1), 238-241.
  11. Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P. (2010), MultiScale Mechanical and Fracture Characteristics and Early-age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites, Cement and Concrete Composites, 32(2), 110-115. https://doi.org/10.1016/j.cemconcomp.2009.10.007
  12. Lee, H., Kang, D., Song, Y., and Chung W. (2017), Heating experiment of CNT cementitous composites with single-walled and multiwalled carbon nanotubes, Journal of Nanomaterials, 2017, 3691509.
  13. Li, G. Y., Wang, P. M., and Zhao, X. (2005), Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon, 43, 1239-1245. https://doi.org/10.1016/j.carbon.2004.12.017
  14. Li, H., Xiao, H.-G., Yuan, J., and Ou, J. (2004), Microstructure of Cement Mortar with Nano-Particles, Composites Part B: Engineering, 35, 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  15. Makar, J. M., Margeson, J., and Luh, J. (2005), Carbon Nanotube/ Cement Composites - Early Results and Potential Applications, Proceedings of the 3rd International Conference on Construction Materials: Performance, Innovations and Structural Implications, Vancouver, Canada, 1-10.
  16. Musso, S., Tulliani, J. M., and Ferro, G. (2009), Influence of carbon nanotubes structure on the mechanical behavior of cement composites, 69(11-12), 1985-1990.
  17. Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997), Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 277, 1971-1975. https://doi.org/10.1126/science.277.5334.1971
  18. Xu, S., Liu, J., and Li, Q. (2015), Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste, 76, 16-23.4.
  19. Xun, Y. and Eil, K. (2009), Carbon nanotube/cement Composite with piezoresistive properties. Smart Mater Structures, 18(5), 1-5.
  20. Yu, M. F., Lourie, O., and Dyer, M. J. (2000), Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637-640. https://doi.org/10.1126/science.287.5453.637

Cited by

  1. Influence of Powder and Liquid Multi-Wall Carbon Nanotubes on Hydration and Dispersion of the Cementitious Composites vol.10, pp.21, 2020, https://doi.org/10.3390/app10217948