References
- 송하원, 권성준, 변근주, 박찬규, "혼화재를 사용한 고성능 콘크리트의 배합특성을 고려한 염화물 확산 해석기법에 관한 연구," 대한토목학회 논문집, 25권, 1A호, 2005, pp. 213-223
- Song, H. W., Kim, H. J., Saraswathy, V., and Kim, T. H., "A Micro-mechanics Based Corrosion Model for Predicting the Service Life of Reinforced Concrete Structures," Int J. Electro Sci., Vol. 2, No. 4, 2007, pp. 341-354
- Maekawa, K., Chaube, R., and Kishi, T., Modeling of Concrete Performance: Hydration, Microstructure Formation and Mass Transport, Routledge, London and New York, 1999, 44 pp
- Song, H. W., Pack, S. W., Lee, C. H., and Kwon, S. J., Service Life Prediction of Concrete Structures under Marine Environment Considering Coupled Deterioration, J. of Restoration of Buildings and Monuments, Vol. 12, No. 4, 2006, pp. 265-284
- Ishida, T., Maekawa, K., and Kishi, T., "Enhanced Modeling of Moisture Equilibrium and Transport in Cementitious Materials under Arbitrary Temperature and Relative Humidity History," Cement and Concrete Research, Vol. 37, No. 4, 2007, pp. 565-578 https://doi.org/10.1016/j.cemconres.2006.11.015
- Song, H. W., Lee, C. H., Jung, M. S., and Ann, K. Y., "Development of Chloride Binding Capacity in Cement Pastes and the Influence of the pH of Hydration Products," Canadian Journal of Civil Engineering, Vol. 35, No. 12, 2008, pp. 1427-1434 https://doi.org/10.1139/L08-089
- Mehta, P. K., Monteiro, P. J. M., Concrete: Structure, Properties, and Materials, Prentice Hall, New Jersey, 1993, 31 pp
- Winslow, D. N. and Diamond, S., "A Mercury Porosimetry stSdy of the Evolution of Porosity in Cement," ASTM J. Materials, Vol. 5, No. 3, 1970, pp. 564-585
- Ritter, H. L. and Drake, L. C., “Pore-size Distribution in Porous Materials,” Industrial and Engineering Chemistry, 17, 1945, 782 pp.
- Winslow, D. Liu, "Pore Structure of Cement Paste in Concrete," Cem. Concr. Res., Vol. 20, No. 2, 1990, pp. 227-235 https://doi.org/10.1016/0008-8846(90)90075-9
- Breugel, Simulation of Hydration and Formation of Structure in Hardening Cement-Based Materials, Delft, 1991, 74 pp.
- Bentz, D. P. and Garboczi, E. J., "Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars," Cem. Concr. Res., Vol. 25, No. 4, 1995 pp. 790-802 https://doi.org/10.1016/0008-8846(95)00069-O
- Garboczi, E. J., "Permeability, Diffusivity, and Microstructural Parameters: A Critical Review," Cem. Concr. Res. Vol. 20, No. 4, 1990., pp. 591-601 https://doi.org/10.1016/0008-8846(90)90101-3
- Cook, R. A. and Hover, K. C., "Mercury Porosimetry of Hardened Cement Pastes," Cem. Concr. Res., Vol. 29, No. 6, 1999, pp. 933-943 https://doi.org/10.1016/S0008-8846(99)00083-6
- Whiting, D., "Rapid Measurements of Chloride Permeability of Concrete," Public Roads, Vol. 45, No. 3, 1981, pp. 101-112
- Feldman, R. F., Chan, G. W., Brousseau, R. J., and Tumida-jski, P. J., "Investigation of the Chloride Permeability Test," ACI Mater. J., Vol. 91, No. 2, 1994, pp. 246-255
- Feldman, R. F., Prudencio Jr., L. R., and Chan, G., "Rapid Chloride Permeability Test on Blended Cement and Other Concretes: Correlations between Charge, Initial Current and Conductivity," Constr. Build. Mat., Vol. 13, No. 3, 1999 pp. 149-154 https://doi.org/10.1016/S0950-0618(98)00033-6
- Sugiyama, T., Tsuji, Y., and Bremner, T. W., "Relationship between Coulomb and Migration Coefficient of Chloride Ions for Concrete in a Steady-state Chloride Migration Test," Mag. Concr. Res., Vol. 53, No. 1, 2001, pp. 13-24 https://doi.org/10.1680/macr.2001.53.1.13
- Truc, O., Ollivier, J. P., and Carcasses, M., "A New Way for Determining the Chloride Diffusion Coefficient in Concrete from Steady State Migration Test," Cem. Concr. Res., Vol. 30, No. 7, 2000, pp. 217-226 https://doi.org/10.1016/S0008-8846(99)00232-X
- Castellote, M., Andrade, C., and Alonso, C., "Measurement of the Steady and Nonsteady-state Chloride Diffusion Coefficients in a Migration Test by Means of Monitoring the Conductivity in the Anolyte Chamber Comparison with Natural Diffusion Tests," Cem. Concr. Res., Vol. 31, No. 10, 2001, pp. 1411-1420 https://doi.org/10.1016/S0008-8846(01)00562-2
- Tang, L. and Nilsson, L. O., "Rapid Determination of Chloride Diffusivity of Concrete by Applying an Electric Field," ACI Mater. J., Vol. 89, No. 1, 1992, pp. 49-53
- 김성운, 박상준, "염해 내구성 콘크리트의 제조 및 시공," 콘크리트구조물의 염해 내구성에 관한 국제 심포지엄, 한국콘크리트학회, 2006, pp. 119-155
- Pogeon, M. and Pleau, R. Durability of Concrete in Cold Climates, E&FN Spon, 1995, 12 pp
- Powers, T. C., "The Mechanisms of Frost Action in Concrete," Stanton Walker Lecture Series on the Material Science, 1965, 3 pp
- Setzer, M. J., Development of the Micro-ice-lens Model. Frost Resistance of Concrete, Essen, Germany, RILEM, 2002, pp. 133-146
- Halamickova, P., Detwiler, R. J., Bentz, D. P., and Garboczi, E. J., "Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter," Cem. Concr. Res., Vol. 25, No. 4,1995, pp. 790-802 https://doi.org/10.1016/0008-8846(95)00069-O
- 조태준, 김이현, 조효남, "콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발," 콘크리트학회 논문집, 20권, 1호, 2008, pp. 13-22 https://doi.org/10.4334/JKCI.2008.20.1.013
- Mihashi, H. and Zhou, Z. Y., "Micro Mechanics Model to Predict Macroscopic Behavior of Concrete under Frost Action," RILEM Proceeding, Pro. 24, 1997, pp. 235-241
Cited by
- Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate vol.27, pp.2, 2015, https://doi.org/10.4334/JKCI.2015.27.2.177
- Performance Based Evaluation of Concrete Chloride Diffusion Resistance from Wind Speed-Sunlight Exposure Time Curing Conditions of Climate Change vol.28, pp.5, 2016, https://doi.org/10.4334/JKCI.2016.28.5.601
- Prediction of Chloride Penetration Depth Rate and Diffusion Coefficient Rate of Concrete from Curing Condition Variations due to Climate Change Effect vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-019-0333-4