DOI QR코드

DOI QR Code

Pore Characteristics of Stainless Steel Slag AOD Blended Cement Pastes by Carbonation Curing

스테인리스 스틸 슬래그 AOD 혼입 시멘트 페이스트의 탄산화 양생에 의한 공극특성

  • 황철성 (가천대학교 토목환경공학과) ;
  • 박경태 (가천대학교 토목환경공학과) ;
  • 최영철 (가천대학교 토목환경공학과)
  • Received : 2018.03.09
  • Accepted : 2018.04.26
  • Published : 2018.05.01

Abstract

In this study, the mechanical and micro-structural change of cement pastes incorporating Stainless-Steel Slag Argon Oxygen Decarburization Slag (STS-A) containing ${\gamma}-C_2S$ as a carbon capture materials were investigated with carbonation curing condition. ${\gamma}-C_2S$ is non-hydraulic, therefore does not react with water. But ${\gamma}-C_2S$ has a reactivity under carbonation curing condition with water. The reaction products fill up the pore in pastes. The microstructure of STS-A blended cement pastes could be densified by this reaction. The pore structure of cement pastes incorporating STS-A was measured using mercury intrusion porosimetry (MIP) after carbonation curing ($CO_2$ concentration is about 5%). Also the fractal characteristics were investigated for the effect of carbonation curing on the micro-structural change of paste specimens. From the results, the compressive strength of carbonated specimens incorporating STS-A increased and pore-structure of carbonated paste is more complicated.

본 연구에서는 탄소 포집 물질인 ${\gamma}-C_2S$를 함유하고 있는 Stainless Steel Slag AOD를 포함한 시멘트 페이스트의 역학적 및 미세구조 변화를 연구하였다. ${\gamma}-C_2S$는 비수경성이며 그러므로 물과 반응하지 않는다. 그러나 ${\gamma}-C_2S$는 물에 의한 탄산화 양생조건에서 반응성을 가지고 있다. 그 반응은 페이스트 안의 공극을 치밀하게 형성하기 때문에 STS-A를 사용한 시멘트 페이스트의 공극구조는 탄산화 ($CO_2$ 농도는 약 5%)후에 수은압입시험에 의해 측정될 수 있다. 또한 Fractal 특성은 시멘트 페이스트의 미세구조변화는 탄산화 영향에 대하여 연구하였다. 그 결과로부터 STS-A를 포함하는 탄산화 시멘트 페이스트는 강도가 증가하였고 공극구조는 더 치밀해졌다.

Keywords

References

  1. Chang, E.-E., Chen, T.-L., Pan, S.-Y., Chen, Y.-H., Chiang, P.-C, (2013), Kinetic modeling on $CO_2$ capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed, J. Hazzar. Mater, 260, 937-346. https://doi.org/10.1016/j.jhazmat.2013.06.052
  2. Chen, K.-W., Pan S.-Y., Chen, C.-T., Chen, Y.-H., Chiang, P.-C. (2016), High-gravity carbonation of basic oxygen furnace slag for $CO_2$ fixation and utilization in blended cement, J. Clean. Prod, 124, 350-360. https://doi.org/10.1016/j.jclepro.2016.02.072
  3. E.-E. Chang, Tse-Lun Chen, Shu-Yuan Pan, Yi-Hung Chen, Pen-Chi Chiang, (2013), Kinetic modeling on $CO_2$ capture using basic oxygen furnace slag coupled with cold-rolling wastewater in a rotating packed bed. Journal of Hazardous Materials, 260. 937-346. https://doi.org/10.1016/j.jhazmat.2013.06.052
  4. Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar, Construction and Building Materials, 124(2016), 1072-1080. https://doi.org/10.1016/j.conbuildmat.2016.08.148
  5. Huijgen, W.J.J., Witkamp, G.-J., Comans, R.N.J., 2005. Mineral $CO_2$ Sequestration by Steel Slag Carbonation. Environ. Sci. Technol. 39, 9676-9682. doi:10.1021/es050795f
  6. Lackner, K.S. (2002), Carbonate chemistry for sequestering fossil carbon. Annu. Rev. Energy Environ, 27, 193-232. https://doi.org/10.1146/annurev.energy.27.122001.083433
  7. Saito G, Sakai E, Watanabe K, Morioka M, Otsuki N. (2008), Carbonation reaction of calcium silicate hydrates containing ${\gamma}-2CaO-SiO_2$ and mechanisms of vaterite formation. J Soc Inorg Mater Japan, 15, 284-92.
  8. Saito, T., Sakai, E., Morioka, M., Otsuki, N. (2010), Carbonation of ${\gamma}-Ca_2SiO_2$ and the Mechanism of Vaterite Formation. J. Adv. Concr. Technol. 8, 273-280. https://doi.org/10.3151/jact.8.273
  9. Santos, R.M., Van Bouwel, J., Vandevelde, E., Mertens, G., Elsen, J., Van Gerven, T. (2013), Accelerated mineral carbonation of stainless steel slags for $CO_2$ storage and waste valorization: Effect of process parameters on geochemical properties. Int. J. Greenh. Gas Control, 17, 32-45. https://doi.org/10.1016/j.ijggc.2013.04.004
  10. Soo-Chun Chae, Young-Nam Jang and Kyoung-Won Ry (2009), Mineral Carbonation as a sequestration method of $CO_2$. Journal of the Geological Society of Korea, 45(5), 527-555.
  11. Zhihua Zhang, Donald Huisingh (2017), Carbon dioxide storage schemes: Technology, assessment and deployment. Journal of Cleaner Production, 142, 1055-1064. https://doi.org/10.1016/j.jclepro.2016.06.199