• Title/Summary/Keyword: membrane material

Search Result 1,089, Processing Time 0.023 seconds

The Polymer Membrane Electrode by Surfactants for Measuring Continuously Thiocyanate Ion in Wastewater (폐수중 티오시안산이온을 측정하기 위한 계면활성제를 이용한 고분자 막전극)

  • 최종석;안형환;강안수;우인성;황명환
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.13-20
    • /
    • 1991
  • Ion-selective electrode responsive to the thiocynate ion prepared by using the quaternary ammonium salts as a active material and PVC as a membrane matrix. The effect of chemical structure and composition of active material, and the membrane thickness on the linear response. the detection limit, and Nernstian slope of the electrode studied. Under the above optimum conditions of membrane, the effect of pH and the selectivity coefficients to various interfering anions were compared and investigated. It was concluded that the functions of thiocynate ion-selective electrode(ISE) were closely related to the chemical structure of the quaternary ammonium salts. The linear response, and the detection limit of the electrode potential increased with the increase of the carbon chain length of the alkyl group in the quaternary ammonium salts in the ascending order of Aliquat 336T, TOAT, TDAT, and TDDAT. The optimum membrane thickness was 0.3mm. The electrode characteristics was better with the decrease of the concentration of active material, and the best concentration was 3 weight percent. The membrane potential was independent of the pH variation in the region from pH 2 to 12. The order of the selectivity coefficients is as follows:Cl $O_4$$^{[-10]}$$I^{[-10]}$ >N $O_3$$^{[-10]}$ >B $r^{[-10]}$$F^{[-10]}$ >C $l^{[-10]}$ >O $A_{c}$ $^{[-10]}$ 〓S $O_4$$^{2-}$.

  • PDF

The effect of early membrane exposure on exophytic bone formation using perforated titanium membrane (천공형 티타늄 막의 조기 노출이 수직 골 형성에 미치는 영향)

  • Kim, Eun-Jung;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.2
    • /
    • pp.237-249
    • /
    • 2007
  • This study was performed to evaluate the effect of membrane exposure on new bone formation when guided bone regeneration with perforated titanium membrane on atrophic alveolar ridge. The present study attempted to establish a GBR model for four adult beagle dog premolar. Intra-marrow penetration defects were created on the alveolar ridge(twelve weeks after extraction) on the mandibular premolar teeth in the beagle dogs. Space providing perforated titanium membrane with various graft material were implanted to provide for GBR. The graft material were demineralized bovine bone(DBB), Irradiated cancellous bone(ICB) and demineralized human bone powder(DFDB). The gingival flap were advanced to cover the membranes and sutured. Seven sites experienced wound failure within 2-3weeks postsurgery resulting in membrane exposure. The animals were euthanized at 4 weeks postsurgery for histologic and histometric analysis. The results of this study were as follows: 1. There was little new bone formation at 4 weeks postsurgery. irrespectively of membrane exposure. 2. There was significant relationship between membrane exposure and bone graft resorption(P<0.05), but no relation between membrane exposure and infiltrated connective tissue. 3. There was much bone graft resorption on DFDB than ICB and DBB. 4. The less exposure was on the perforated titanium membrane, the more dense infiltrated connective tissue was filled under the membrane when grafted with ICB and DBB. but there was no relationship between the rate of membrane exposure and the percentage of infiltrated connective tissue area and no relationship between the percentage of the area in the infiltrated connective tissue and in the residual bone graft. Within the above results, bone formation may be inhibited when membrane was exposed and ICB and DBB were more effective than DFDB as a bone graft material when guided bone regeneration.

The Fabrication of Micro-heaters with Low Consumption Power Using SOI and Trench Structures and Its Characteristics (SOI와 트랜치 구조를 이용한 초저소비전력형 미세발열체의 제작과 그 특성)

  • 정귀상;홍석우;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • This paper presents the optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro elelctro mechanical system) applications usign SOI (Si-on-insulator) and trench structures. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10㎛ thick Si membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD (resistance thermometer device) on the same substrate by suing MgO as medium layer. The thermal characteristics of the micro-heater wit the SOI membrane is 280$\^{C}$ at input power 0.9W; for the SOI membrane with 10 trenches, it is 580$\^{C}$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro-thermal sensors and actuators.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line (막 구조물의 측지선을 이용한 재단도 생성에 관한 연구)

  • Ahn, Sang-Gil;Shon, Su-Deok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

The fabrication of ultra-low consumption power type micro-heaters using SOI and trenche structures (SOI와 드랜치 구조를 이용한 초저소비전력형 미세발열체의 제작)

  • 정귀상;이종춘;김길중
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.569-572
    • /
    • 2000
  • This paper presents the optimized fabrication and thermal characteristics of micro-heaters for thermal MEMS applications using a SDB SOI substrate. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10$\mu\textrm{m}$ thick silicon membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD(Resistance Thermometer Device)on the same substrate by using MgO as medium layer. The thermal characteristics of the micro-heater with the SOI membrane is 280$^{\circ}C$ at input Power 0.9 W; for the SOI membrane with 10 trenches, it is 580$^{\circ}C$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro thermal sensors and actuators.

  • PDF

CLINICAL USES OF HOMOLOGOUS GELATINIZED BONE MATRIX(GBM) IN DENTAL IMPLANT SURGERY (임플란트 식립시 동종뼈 막의 임상적 활용)

  • Lee, Eun-Young;Kim, Kyoung-Won;Um, In-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.229-236
    • /
    • 2006
  • The biologic principle of guided bone regeneration(GBR) has been studied extensively in hopes of regenerating alveolar bone. Various materials have been utilized as regenerative membranes and grafting materials in implant surgery. To improve the ability of membranes, several types of membrane have been developed. Various materials have been utilized as regenerative membranes; however, all materials have disadvantages, and the ideal membrane material is yet to be identified. In these cases, a homologous gelatinized bone matrix(GBM) were used as a regenerative material in conjunction with the placement of endosseous root implants. 22 patients participated in this study, and 42 implants were inserted. The result of 1st operative surgery was uneventful, inflammatory reaction and dehiscences were not observed except for only one case. After the final protheses, all implants were functioning successfully. The major advantages in the use of GBMs for guided bone regeneration are of very wide application such as membrane and graft material, and that a second procedure to remove the material is not necessary, and the GBMs are accepted by the surrounding tissues without complications. The purpose of this study was to observe the usefulness of GBMs in dental implant surgery.

Determination of the Actual Equilibrium Shape Finding and Optimum Cutting Pattern for Membrane Structures (막구조물의 준공평형형상해석 및 최적재단도 결정)

  • Lee, Jang-Bog;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1 s.1
    • /
    • pp.157-166
    • /
    • 2001
  • In general, the cutting pattern of the membrane structures is determined by dividing the complicated curved 3-D surface into several 2-D plane strip by using flattening technique. In this procedure, however, some discrepancies ore occurred between actual stresses of equilibrated state and designed uniform stresses because the material properties are not considered. These deviations can cause the critical structural problems, wrinkling or overstress, and thus a optimization process should be considered. In this paper, a new analytical method for determining an optimum cutting pattern considering material properties is presented. Here, iterative procedure is introduced to decrease the errors caused in numerical process. The optimization method proposed can diminish the deviations occurred by material properties and numerical errors, simultaneously. As a results, it is shown that the final stress distributions for the HP shell model are sufficiently near to design stress distributions, and it can be concluded that this method can be used to obtain the optimized cutting pattern of membrane structures.

  • PDF

Characterization of Frequency Separation in Polymer Membranes Mimicking a Human Auditory System (생체 청각기구를 모사한 폴리머 박막의 주파수 분리 특성 평가)

  • Song, Won-Joon;Bae, Sung-Jae;Kim, Wan-Doo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.516-521
    • /
    • 2011
  • The basilar membrane, an important functional part of the cochlea, is responsible for spectral separation of vibration signals transmitted from the stapes. In current study, scaled-up polymer membranes designed by mimicking the human basilar membrane were used for investigation of the frequency-separation characteristic. Displacement field formed on each polymer membrane was acquired by Laser Doppler scanning vibrometer and post-processed frequency-wise. The locations of the maximum displacement along the centerline were identified and collected for individual frequency range to produce the frequency-position map of individual polymer membrane. The influences of the membrane thickness and material properties on the variation of the frequency separability were discussed.

Preparation and Performance of Composite Membrane Prepared by Layer-by-Layer Coating Method (Layer-by-Layer 코팅법을 적용한 복합막 제조와 투과성능 평가)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.538-546
    • /
    • 2015
  • In this study, composite membrane is prepared by Layer-by-Layer method using hydrophobic polymer as a coating material on the polysulfone support. The existence of coating layer on the surface and cross section was confirmed by the scanning electronic microscopy. The flux and rejection of the resulting membranes were characterized using 100 ppm NaCl feed solution. PVSA, PEI, PAA, PSSA, PSSA_MA were used as a coating polymer in this study. The composite membrane prepared by using 8,000 ppm PAA solution (Ion strength = 0.35, Coating time = 3 min) and 10,000 ppm PEI solution (Coating time = 4 min). As a result, PAA-PEI composite membrane showed flux of 101 LMH and salt rejection of 66.7%. The composite membrane showed the comparable performance as good as NE 4040-70 (Flux = 30 LMH, Rejection = 40~70%) model produced by Toray Chemical co.