• 제목/요약/키워드: membrane Electrode Assembly

검색결과 144건 처리시간 0.031초

항공기 동력원으로 연료전지시스템 적용시 고려사항 고찰 (Study of Fuel Cell System for Aerial Vehicles)

  • 구영모;김명환;유승을
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.683-684
    • /
    • 2011
  • 연료전지시스템을 항공기 동력원으로 사용하기 위해서는 요구되는 출력에 필요한 스택성능과 한정된 부피 내 연료전지시스템을 탑재하기 위한 운전장치 구성, 그리고 무게를 최소화하기 위한 부품 및 재료 선정이 필요하다. 스택의 기본성능은 MEA(Membrane electrode assembly)와 기체확산층 구조, 분리판 디자인 및 운전조건 등에 의해 결정된다. 스택의 기본성능은 연료전지시스템을 구성하는 운전장치 구성 및 성능에 의해 달라지기 때문에 어떠한 운전장치를 어떠한 구성으로 설계하는가에 따라서 성능이 변한다고 볼 수 있다. 본 연구에서는 연료전지시스템을 항공기 동력원으로 사용하기 위해서 고려되어야할 스택과 운전장치의 구성이 성능에 미치는 영향과 운전환경(스택 경사, 고도)이 연료전지 스택성능에 미치는 영향에 대해 고찰하였다.

  • PDF

직접메탄올 연료전지에서 전지 성능에 대한 확산층의 영향 (Effect of Diffusion Layer for Cell Performance in DMFC)

  • 권부길;박경원;최종호;성영은
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2001년도 연료전지심포지움 2001논문집
    • /
    • pp.179-184
    • /
    • 2001
  • The diffusion layer within MEA(membrane electrode assembly) has been evaluated important factor for improvement of cell performance in DMFC. The diffusion layer in MEA structure leads to the reduction of catalyst loss in active catalysts layer as well as prevention of water-flooding in cathode. Cell performance is directly affected by interior properties of diffusion layer materials. Acetylene Black and $RuO_2$ with large pore size and low porosity compared to Vulcan XC-72R gave better performance caused by vigorous methanol diffusion and water removal. And $RuO_2$ as diffusion layer materials showed different behavior in anode and cathode compartment, that is, diffusion layers in anode and cathode side make methanol diffusion and water removal facilitate, respectively.

  • PDF

연료전지스택 바깥판의 위상최적설계 (Topology Optimization for End Plate of Fuel Cell Stack)

  • 최우석;오성진;김성종;홍병선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.456-461
    • /
    • 2003
  • A fuel cell is an electrochemical device in which the energy of a chemical reaction is converted directly into electricity. By combining hydrogen fuel with oxygen from air, electricity is formed, without combustion of any form. Water and heat are the only by-products when hydrogen is used as the fuel source. Fuel cell stack consists of multi-layered unit cells. A unit cell consists of MEA and bipolar plates. The end plate of fuel cell stack should give a uniform distributed pressure to multi unit cell layers so as to reduce the contact resistance and to prevent the leakage of reactant gases and the damage of multi layer components. The current end plate is redundantly large and heavy. It makes the power per unit volume reduced. Topology optimization of end plate is conducted for mass reduction and enhancement of bending rigidity. The evaluation of the current design and the recommendation for the future design is remarked.

  • PDF

메탄올 농도에 따른 직접 메탄올 연료전지의 성능 해석 (Performance Characteristics of Direct Methanol Fuel Cell with Methanol Concentration)

  • 조창환;김용찬;장영수
    • 설비공학논문집
    • /
    • 제20권3호
    • /
    • pp.197-204
    • /
    • 2008
  • DMFC(Direct Methanol Fuel Cell) is one of promising candidates for power sources of small mobile IT devices like notebook, cell phone, and so on. Efficient operation of fuel cell system is very important for long-sustained power supply because of limited fuel tank size. It is necessary to investigate operation characteristics of fuel cell stack for optimal control of DMFC system. The generated voltage was modeled according to various operating condition; methanol concentration, stack temperature, and load current. It is inevitable for methanol solution at anode to cross over to cathode through MEA(membrane electrode assembly), which reduces the system efficiency and increases fuel consumption. In this study, optimal operation conditions are proposed by analyzing stack performance model, cross-over phenomenon, and system efficiency.

탄소나노튜브에 담지된 PtCo 촉매 제조 및 PEMFC Cathode 전극 특성 (Synthesis of Carbon Nanotubes Supported PtCo Electrocatalysts and Its Characterization for the Cathode Electrode of PEMFC)

  • 정동원;박순;강정탁;김준범
    • 한국재료학회지
    • /
    • 제19권5호
    • /
    • pp.233-239
    • /
    • 2009
  • The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.

PtCo/C 촉매를 사용한 PEMFC MEA의 활성화 프로토콜 비교 (The Comparison of Activation Protocols for PEMFC MEA with PtCo/C Catalyst)

  • 이기성;정현승;현진호;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.178-186
    • /
    • 2023
  • Three activation methods (constant voltage, current cycling, and hydrogen pumping) were applied to investigate the effects on the performance of the membrane electrode assembly (MEA) loaded with PtCo/C catalyst. The current cycling protocol took the shortest time to activate the MEA, while the performance after activation was the worst among the all activation methods. The constant voltage method took a moderate activation time and exhibited the best performance after activation. The hydrogen pumping protocol took the longest time to activate the MEA with moderate performance after activation. According to the distribution of relaxation time analysis, the improved performance after the activation mainly comes from the decrease of charge transfer resistance rather than the ionic resistance in the cathode catalyst layer, which suggests that the existence of water on the electrode is the key factor for activation.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

순수 수소 공급조건에서 정치용 PEMFC MEA와 차량용 MEA 성능비교 (Performance Comparison Between Stationary PEMFC MEA and Automobile MEA under Pure Hydrogen Supply Condition)

  • 오소형;이미화;이학주;김욱원;박정우;박권필
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.469-473
    • /
    • 2018
  • 개질가스를 일반적으로 사용하는 정치용 PEMFC에 순수 수소를 공급했을 때 그 특성을 차량용 막과 전극 합체(MEA)와 비교하였다. 수소 공급량을 변화시키며 anode에서 수소공급량이 전체 성능에 미치는 영향을 비교하였다. 수소를 1.0~1.7 과잉(stoi.)범위에서 공급량을 변화시켰을 때 정치용이나 차량용 모두 OCV에 미치는 영향은 거의 없었다. 0.7 V에서 정치용 MEA의 전류밀도는 차량용보다 약 16% 높았다. 그리고 상대습도를 변화시키며 I-V 성능, 임피던스, LSV를 측정하였다. 상대습도 증가에 따라 OCV와 전해질 막 저항이 모두 감소하였다. 정치용 MEA의 수소투과도가 차량용보다 더 낮아 정치용 MEA의 전해질 막의 내구성이 차량용보다 더 높을 수 있음을 보였다.

Characterization of Methanol Crossover through Nafion Membranes by Direct Cell Performance Measurement

  • Park, Kyung-Won;Kim, Young-Min;Kwon, Bu-kil;Choi, Jong-Ho;Park, In-Su;Sung, Yung-Eun
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.226-231
    • /
    • 2002
  • Power densities produced by the permeation of methanol through membranes were directly measured by inserting the membrane in front of anode in a membrane-electrode-assembly of a direct methanol fuel cell (DMFC). The power density was closely related to the loss of power in the DMFC and was strongly affected by temperature. As the cell temperature was increased, the power density resulting from methanol crossover was increased. The increase in methanol crossover had be attributed to diffusion caused or affected by temperature. Methanol crossover a major effect on the performance of a DMFC at a relatively low temperature with $26\%\;loss\;at\;30^{\circ}C$. In order to reduce methanol crossover, a conventional Nafion membrane was modified by the incorporation of Pt or Pd. The reduction in methanol crossover was investigated in these modified membranes by our cell performance measurement. Pt and Pd particles incorporated in the Nafion membranes block methanol pathway and prevent methanol transport through the membranes, which was proved by combining with liquid chromatography.

이온 오염에 의한 고분자전해질 연료전지의 성능저하 (Decrease of PEMFC Performance by Ion Contamination)

  • 송진훈;우명우;김세훈;안병기;임태원;박권필
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.187-190
    • /
    • 2012
  • 고분자전해질연료전지(PEMFC)에서 음극 공기에 의한 이온오염은 막전극 합체(MEA)의 성능을 심각하게 열화시킨다. 본 연구에서는 산업단지, 길가, 해변의 공기 중 이온 농도를 측정하였다. 이들 지역에서 $Na^+$, $K^+$, $Ca^{2+}$$Fe^{3+}$ 이온 농도가 비교적 높았다. 가습수로부터 이들 이온이 cathode에 유입되어 MEA 성능에 미치는 영향에 대해 연구하였다. 수돗물을 가습수로 사용해 170시간 운전한 후 MEA 성능이 초기의 11%로 감소하였다. 이들 오염 이온들이 수소이온보다 전해질 막의 슬폰산기와 친화력이 더 강해 전해질 막에 쉽게 이온 교환된 결과다. MEA 중에서 전극/막 계면에서 이온 오염이 MEA 성능저하에 미치는 영향이 제일 컸다.