DOI QR코드

DOI QR Code

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Min Kyung (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, So Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Park, Hyun S. (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2017.08.10
  • Accepted : 2017.09.25
  • Published : 2017.12.31

Abstract

Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Keywords

References

  1. B. Obama, Science, 2017, 355(6321), 126-129. https://doi.org/10.1126/science.aam6284
  2. L. Barreto, A. Makihira, K. Riahi, Int. J. Hydrogen Energy, 2003, 28(3), 267-284. https://doi.org/10.1016/S0360-3199(02)00074-5
  3. U. Babic, M. Suermann, F.N. Buchi, L. Gubler, T.J. Schmidt, J. Electrochem. Soc., 2017, 164(4), F387-F399. https://doi.org/10.1149/2.1441704jes
  4. J.R. McKone, N.S. Lewis, H.B. Gray, Chem. Mater., 2014, 26(1), 407-414. https://doi.org/10.1021/cm4021518
  5. J.A. Turner, Science, 2004, 305(5686), 972-974. https://doi.org/10.1126/science.1103197
  6. J.O. Bokris, T. Otagawa, J. Phys. Chem., 1983, 87(15), 2960-2971. https://doi.org/10.1021/j100238a048
  7. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc., 2013, 135(45), 16977-16987. https://doi.org/10.1021/ja407115p
  8. C. Xiang, K.M. Papadantonakis, N.S. Lewis, Mater. Horizons 2016, 3(3), 169-173. https://doi.org/10.1039/C6MH00016A
  9. M.K. Cho, H.-Y. Park, S. Choe, S.J. Yoo, J.Y. Kim, H.-J. Kim, D. Henkensmeier, S.Y. Lee, Y.-E. Sung, H.S. Park, J.H. Jang J. Power Sources, 2017, 347, 283-290. https://doi.org/10.1016/j.jpowsour.2017.02.058
  10. D. Zang, K. Zeng, Prog. Energy Combust. Sci., 2010, 36,(3), 307-326. https://doi.org/10.1016/j.pecs.2009.11.002
  11. D. Pletcher, X. Li, Int. J. Hydrog. Energy, 2011, 36(23), 15089-15104. https://doi.org/10.1016/j.ijhydene.2011.08.080
  12. M.A. Laguna-Bercero, J. Power Sources, 2012, 203, 4-16. https://doi.org/10.1016/j.jpowsour.2011.12.019
  13. J. Parrondo, C.G. Arges, M. Niedzwiecki, E.B. Anderson, K.E. Ayers, V. Ramani, RSC Adv., 2014, 4(19), 9875-9879. https://doi.org/10.1039/c3ra46630b
  14. H. Vandenborre, R. Leysen, H. Nackaerts, D. Van der Eecken, Ph. Van Asbroeck, W. Smets, J. Piepers Int. J. Hydrog. Energy, 1985, 10(11), 719-726. https://doi.org/10.1016/0360-3199(85)90107-7
  15. S. A. Grigoriev, P. Millet, S.V. Korobtsev, V.I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet, V.N. Fateev, Int. J. Hydrog. Energy, 2009, 34(14), 5986-5991. https://doi.org/10.1016/j.ijhydene.2009.01.047
  16. T. Smolinka, 18th World Hydrog. Energy Conf. 2010 Essen, 2010.
  17. J.E. Genovese, K. Harg, M. Paster, J.A. Turner, Independent Review Panel Summary Report, 2009.
  18. A. Irshad, N. Munichandraiah, ACS Appl. Mater. Interfaces, 2015, 7(29), 15765-15776. https://doi.org/10.1021/acsami.5b02601
  19. H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today, 2016, 11(5), 601-625. https://doi.org/10.1016/j.nantod.2016.09.001
  20. M. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, H. Dai, Nano Research, 2016, 9(1), 28-46. https://doi.org/10.1007/s12274-015-0965-x
  21. M.K. Bates, Q. Jia, N. Ramaswamy, R.J. Allen, S. Mukerjee, J. Phys. Chem. C, 2015, 119(10), 5467-5477. https://doi.org/10.1021/jp512311c
  22. S. Jung, C.C.L. McCrory, I.M. Ferrer, J.C. Peters, T.F. Jaramillo, J. Mater. Chem. A, 2016, 4(8), 3068-3076. https://doi.org/10.1039/C5TA07586F
  23. D. Aili, M.K. Hansen, R.F. Renzaho, Q. Li, E. Christensen, J.O. Jensen, N.J. Bjerrum, J. Membr. Sci., 2013, 447, 424-432. https://doi.org/10.1016/j.memsci.2013.07.054
  24. C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Angew. Chem. Int. Ed., 2014, 53(5), 1378-1381. https://doi.org/10.1002/anie.201308099
  25. L. Zeng, T.S. Zhao, Nano Energy, 2015, 11, 110-118.
  26. Y. Leng, G. Chen, A.J. Mendoza, T.B. Tighe, M.A. Hickner, C.-Y. Wang, J. Am. Chem. Soc., 2012, 134(22), 9054-9057. https://doi.org/10.1021/ja302439z
  27. J. Zhang, H. Zhang, J. Wu, J. Zhang, in: Pem Fuel Cell Testing and Diagnosis, Elsevier, Amsterdam, 2013.
  28. S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, M. Velan, Int. J. Hydrog. Energy, 2013, 38(35), 14934-14942. https://doi.org/10.1016/j.ijhydene.2013.09.033
  29. http://www.actaspa.com/type/hydrogen-production/.
  30. M. Faraj, M. Boccia, H. Miller, F. Martini, S. Borsacchi, M. Geppi, A. Pucci, Int. J. Hydrog. Energy, 2012, 37(20), 14992-15002. https://doi.org/10.1016/j.ijhydene.2012.08.012
  31. http://www.protononsite.com/hydrogen-fueling.
  32. FY 2015 Annual Progress Report in DOE Hydrogen and Fuel Cell Program.
  33. G. Gardner, J. Al-Sharab, N. Danilovic, Y.B. Go, K. Ayers, M. Greenblatt, G. Charles Dismukes, Energy Environ. Sci., 2016, 9(1), 184-192. https://doi.org/10.1039/C5EE02195B
  34. S. Jeong, J. Lee, S. Woo, J. Seo, B. Min, Energies, 2015, 8(7), 7084-7099. https://doi.org/10.3390/en8077084
  35. X. Wu, K. Scott, J. Power Sources, 2012, 206, 14-19. https://doi.org/10.1016/j.jpowsour.2011.12.052
  36. Y.-C. Cao, X. Wu, K. Scott, Int. J. Hydrog. Energy, 2012, 37(12), 9524-9528. https://doi.org/10.1016/j.ijhydene.2012.03.116
  37. X. Wu, K. Scott, Int. J. Hydrog. Energy, 2013, 38(8), 3123-3129. https://doi.org/10.1016/j.ijhydene.2012.12.087
  38. S.H. Ahn, B.-S. Lee, I. Choi, S.J. Yoo, H.-J. Kim, E. Cho, D. Henkensmeier, S.W. Nam, S.-K. Kim, J.H. Jang, Appl. Catal. B: Environ., 2014, 154-155, 197-205. https://doi.org/10.1016/j.apcatb.2014.02.021
  39. X. Wu, K. Scott, F. Xie, N. Alford, J. Power Sources, 2014, 246, 225-231. https://doi.org/10.1016/j.jpowsour.2013.07.081
  40. J. Parrondo, V. Ramani, J. Electrochem. Soc., 2014, 161(10), F1015-F1020. https://doi.org/10.1149/2.0601410jes
  41. J. Parrondo, M. George, C. Capuano, K.E. Ayers, V. Ramani, J. Mater. Chem. A, 2015, 3(20), 10819-10828. https://doi.org/10.1039/C5TA01771H
  42. L.A. Diaz, J. Hnat, N. Heredia, M.M. Bruno, F.A. Viva, M. Paidar, H.R. Corti, K. Bouzek, G.C. Abuin, J. Power Sources, 2016, 312, 128-136. https://doi.org/10.1016/j.jpowsour.2016.02.032
  43. S.H. Ahn, S.J. Yoo, H.-J. Kim, D. Henkensmeier, S.W. Nam, S.-K. Kim, J.H. Jang, Appl. Catal. B: Environ., 2016, 180, 674-679. https://doi.org/10.1016/j.apcatb.2015.07.020
  44. L. Xiao, S. Zhang, J. Pan, C. Yang, M. He, L. Zhuang, J. Lu, Energy Environ Sci., 2012, 5(7), 7869-7871. https://doi.org/10.1039/c2ee22146b