• Title/Summary/Keyword: medicinal reaction

Search Result 228, Processing Time 0.027 seconds

Protective Effect of a 43 kD Protein from the Leaves of the Herb, Cajanus indicus L on Chloroform Induced Hepatic-disorder

  • Ghosh, Ayantika;Sarkar, Kasturi;Sil, Parames C.
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.197-207
    • /
    • 2006
  • Cajanus indicus is a herb with medicinal properties and is traditionally used to treat various forms of liver disorders. Present study aimed to evaluate the effect of a 43 kD protein isolated from the leaves of this herb against chloroform induced hepatotoxicity. Male albino mice were intraperitoneally treated with 2mg/kg body weight of the protein for 5 days followed by oral application of chloroform (0.75ml/kg body weight) for 2 days. Different biochemical parameters related to physiology and pathophysiology of liver, such as, serum glutamate pyruvate transaminase and alkaline phosphatase were determined in the murine sera under various experimental conditions. Direct antioxidant role of the protein was also determined from its reaction with Diphenyl picryl hydraxyl radical, superoxide radical and hydrogen peroxide. To find out the mode of action of this protein against chloroform induced liver damage, levels of antioxidant enzymes catalase, superoxide dismutase and glutathione-S-transferase were measured from liver homogenates. Peroxidation of membrane lipids both in vivo and in vitro were also measured as malonaldialdehyde. Finally, histopathological analyses were done from liver sections of control, toxin treated and protein pre- and post-treated (along with the toxin) mice. Levels of serum glutamate pyruvate transaminase and alkaline phosphatase, which showed an elevation in chloroform induced hepatic damage, were brought down near to the normal levels with the protein pretreatment. On the contrary, the levels of anti-oxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferase that had gone down in mice orally fed with chloroform were significantly elevated in protein pretreated ones. Besides, chloroform induced lipid peroxidation was effectively reduced by protein treatment both in vivo and in vitro. In cell free system the protein effectively quenched diphenyl picryl hydrazyl radical and superoxide radical, though it could not catalyse the breakdown of hydrogen peroxide. Post treatment with the protein for 3 days after 2 days of chloroform administration showed similar results. Histopathological studies indicated that chloroform induced extensive tissue damage was less severe in the mice livers treated with the 43 kD protein prior and post to the toxin administration. Results from all these data suggest that the protein possesses both preventive and curative role against chloroform induced hepatotoxicity and probably acts by an anti-oxidative defense mechanism.

Isolation and Characterization of Actinomycete Strain BK185 Possessing Antifungal Activity against Ginseng Root Rot Pathogens (인삼 뿌리썩음병균에 항균활성이 있는 방선균 BK185의 분리 및 특성)

  • Kim, Byung-Yong;Bae, Mun-Hyung;Ahn, Jae-Hyung;Weon, Hang-Yeon;Kim, Sung-Il;Kim, Wan-Kyu;Oh, Dong-Chan;Song, Jaekyeong
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.396-403
    • /
    • 2014
  • Ginseng (Panax ginseng C. A. Meyer) is an economically valuable pharmaceutical crop in Korea. In order to find promising biocontrol agents for soil-borne fungal pathogens which infect ginseng roots, we have isolated actinomycete, BK185 from soil. The isolate was investigated for the antifungal activity against to ginseng rot pathogens prior to testing genetic and chemical properties. The strain was identified as Streptomyces sp. using phylogenetic analysis based on 16S rRNA gene sequence. The most closely related species was S. sporoclivatus and S. geldanamycininus with high similarities (>99%). The isolate, BK185 showed positive reaction for PCR detection targeting biosynthetic gene clusters of PKS (Type-I polyketide synthase) and NRPS (Non-ribosomal polypeptide synthetase) genes. Major metabolite from the BK185 was analyzed by The LC/MS and identified to geldamycin, which was known to contained broad antibacterial, antifungal or anticancer activities. The results provide evidences that the strain, BK185 can be promising biocontrol agent for ginseng organic farming.

Anti-Inflammatory Effect of Ixeris dentata on Ultraviolet B-Induced HaCaT Keratinocytes

  • Kim, Sung-Bae;Kang, Ok-Hwa;Keum, Joon-Ho;Mun, Su-Hyun;An, Hyun-Jin;Jung, Hyun-Ju;Hong, Seung-Heon;Jeong, Dong-Myong;Kweon, Kee-Tae;Kwon, Dong-Yeul
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • Human skin is the first line of defense for the protection of the internal organs of the body from different stimuli. Ultraviolet B (UVB) irradiation induces skin damage and inflammation through the secretion of various cytokines, which are immune regulators produced by cells. To prevent the initiation of skin inflammation, keratinocytes that have been irreversibly damaged by radiation must be removed through the apoptotic mechanism. Ixeris dentata (family: Asteraceae) is a perennial medicinal herb indigenous to Korea. It has been used in Korea, China, and Japan to treat in digestion, pneumonia, diabetes, hepatitis, and tumors. To gain insight into the anti-inflammatory effects of I. dentata, we examined its influence on UVB-induced pro-inflammatory cytokine production in human keratinocytes (HaCaT cells), by observing cells that were stimulated with UVB in the presence or absence of I. dentata. In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of mitogen-activated protein kinase (MAPKs). I. dentata inhibited UVBinduced production of the pro-inflammatory cytokine interleukin (IL)-6 in a dose-dependent manner. Further, I. dentata inhibited the UVB-induced expression of cyclooxygenase (COX)-2. Furthermore, I. dentata inhibited the phosphorylation of c-Jun NH2-terminal kinase and p38 MAPKs, suggesting that it inhibits the secretion of the pro-inflammatory cytokines IL-6 and IL-8, and COX-2 expression, by blocking MAPK phosphorylation. These results suggest that I. dentate can potentially protect against UVB-induced skin inflammation.

The anti-allergy and anti-inflammatory effect of Anemarrhenae Rhizoma in vivo and in vitro

  • Kim, Su-Jin;Jeong, Hyun-Ja;Myung, Noh-Yil;Moon, Phil-Dong;Lee, Ju-Young;Yi, Byoung-Jae;Lee, Eun-Hyub;An, Nyeon-Hyung;Park, Seok-Jae;Kim, Min-Cheol;Jun, Suk-Min;Lee, Ji-Hyun;Kim, Hyung-Min;Hong, Seung-Heon;Um, Jae-Young
    • Advances in Traditional Medicine
    • /
    • v.7 no.3
    • /
    • pp.235-243
    • /
    • 2007
  • Anemarrhenae Rhizoma (AR) is used in traditional oriental medicine for various medicinal purposes. However, the exact mechanism that accounts for the anti-allergy and anti-inflammatory effects of the AR is still not fully understood. The aim of The present study is to elucidate whether and how AR modulates the allergic reactions in vivo, and inflammatory reaction in vitro. In this study, we showed that AR significantly decreased compound 48/80-induced systemic anaphylaxis, paw oedema, and histamine release from preparation of rat peritoneal mast cells. Also, AR inhibited the expression of inflammatory cytokine in PMA plus A23187-stimulated human mast cells (HMC-1). In addition, we showed that anti-inflammatory mechanism of AR is through suppression of nuclear factor-${\kappa}B$ activation $I{\kappa}B-{\alpha}$degradation. These results provided new insight into the pharmacological actions of AR as a potential molecule for therapy of inflammatory allergic diseases.

Analysis of Trace Levels of Lodinated Trihalomethanes in Water Using Headspace - GC/ECD (Headspace - GC/ECD를 이용한 수중의 미량 요오드계 트리할로메탄류 분석)

  • Son, Hee-Jong;Song, Mi-Jung;Kim, Kyung-A;Yoom, Hoon-Sik;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Trihalomethanes (THMs) are formed as a results of the reaction of residual chlorine, used as a disinfectant in drinking water, with the organic matter in raw water. Although chlorinated and brominated THMs are the most common disinfection byproducts (DBPs) reported, iodinated THMs (I-THMs) can be formed when iodide is present in raw water. I-THMs have been usually associated with several medicinal or pharmaceutical taste and odor problems and is a potential health concern since they have been reported to be more toxic than their brominated and chlorinated analogs. Currently, there is no published standard analytical method for I-THMs in water. An automated headspace-gas chromatography/electron capture detector (GC/ECD) technique was developed for routine analysis of 10 THMs including 6 I-THMs in water samples. The optimization of the method is discussed. The limits of detection (LOD) and limits of quantification (LOQ) range from 12 ng/L to 56 ng/L and from 38 ng/L to 178 ng/L for 10 THMs, respectively. Matrix effects in river water, sea water and wastewater treatment plant (WWTP) final effluent water were investigated and it was shown that the method is suitable for the analysis of trace levels of I-THMs, in a wide range of waters. The method developed in the present study has the advantage of being rapid, simple and sensitive.

Isolation and Characterization of Bacillus Species Possessing Antifungal Activity against Ginseng Root Rot Pathogens (인삼 뿌리썩음병에 길항력이 있는 Bacillus 균의 분리 동정 및 특성 조사)

  • Kim, Byung-Yong;Ahn, Jae-Hyung;Weon, Hang-Yeon;Song, Jaekyeong;Kim, Sung-Il;Kim, Wan-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.357-363
    • /
    • 2012
  • Ginseng (Panax ginseng C. A. Meyer) is an economically important crop in Korea. While the consumption of the crop is gradually increasing, the yield is decreasing due to the injury of continuous cultivation or infection of soil-borne fungal pathogens such as Cylindrocarpon destructans, Fusarium solani, Rhizoctonia solani and Sclerotinia nivalis. In order to find promising biocontrol agents, we have isolated 439 soil bacteria from ginseng cultivated soil and tested their antifungal activities against ginseng rot pathogens. Among them, 3 strains were finally selected and tested for the elucidation of their genetic and biochemical properties. They were identified as Bacillus amyloliquefaciens using phylogenetic analysis based on 16S rRNA gene sequences. Moreover, all selected strains showed positive reaction for PCR detection targeting biosynthetic gene sequences of iturin A and surfactin. The results provided promising evidences that the bacterial strains isolated from ginseng cultivated soil can be novel biocontrol agents for ginseng cultivaion.

Thrombin Inhibition Activity of Fructus Extract of Crataggus pinnatifida Bunge (산사자 추출물의 트롬빈 저해활성)

  • Ryu, Hee-Young;Kim, Yung-Kwan;Kwun, In-Sook;Kwon, Chong-Suk;Jin, Ing-Nyol;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.17 no.4 s.84
    • /
    • pp.535-539
    • /
    • 2007
  • The fructus of Crataegus pinnatifida Bunge has been used as medicinal and food source in worldwide. In this study, a strong direct thrombin inhibition and antithrombosis activity were identified from the methanol extract of C. pinnatifida Bunge fructus. The solvent fractionation of fructus extract using hexane, ethylacetate, butanol revealed that the butanol fraction has a prominent antithrombin activity. Thrombin time(blood-clot formation time) and activated partial thromboplastin time(aPTT) extended to 835% and 315% by addition of the butanol fraction at concentration of 1.25 mg/mL, whereas thrombin time extended to 287% by addition of aspirin at concentration of 1,25 mg/mL. The butanol fraction showed anthrone-positive and weak ninhydrine-postive reaction. The thrombin inhibitory activity was not related to previously reported flavonoids or polyphenols. The activity was maintained against acid treatment(0.5 N HCl for 120 min), but rapidly lost by heat-treatment($100^{\circ}C$ for 30 min). Our results suggested that fructus of C. pinnatifida Bunge with non-heat treatment process could be developed as a natural source of antithrombosis.

Properties of hydrolyzed α-lactalbumin, β-lactoglobulin and bovine serum albumin by the alcalase and its immune-modulation activity in Raw 264.7 cell

  • Yu, Jae Min;Son, Ji Yoon;Renchinkhand, Gerelyuya;Kim, Kwang-Yeon;Sim, Jae Young;Nam, Myoung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.459-470
    • /
    • 2020
  • This study investigated the effects of the proteolytic hydrolysates of α-lactalbumin (LA), β-lactoglobulin (LG) and bovine serum albumin (BSA) by alcalase on inflammatory cytokines. The proteolytic hydrolysates were separated into two fraction of peptides, ≤ 10,000 Da and > 10,000 Da, respectively, because various low molecular weight peptides were generated during the hydrolysis reaction time. Among the hydrolysate peptides, BSA (all types), β-LG (> 10,000 Da), and α-LA (> 10,000 Da) showed an inhibitory activity against thymic stromal lymphopoietin (TSLP) mRNA expression in lipopolysaccharide-induced RAW264.7 murine macrophages. α-LA (> 10,000 Da), β-LG (hydrolysates), and BSA (> 10,000 Da) showed an inhibitory activity against tumor necrosis factor (TNF)-α expression. α-LA (all types), β-LG (hydrolysates, > 10,000 Da), and BSA (> 10,000 Da) showed an inhibitory activity against interleukin-6 (IL-6) expression. α-LA (> 10,000 Da), β-LG (> 10,000 Da), and BSA (all types) showed an inhibitory activity against inducible nitric oxide synthase (iNOS) expression. α-LA (> 10,000 Da), β-LG (> 10,000 Da), and BSA (all types) showed an inhibitory activity against cyclooxygenase (COX)-2 expression. The lowest level of TNF-α production was measured with α-LA (> 10,000 Da) and β-LG (> 10,000 Da) for all types, and a similar low level was measured for all types of BSA. The highest level of IL- 6 production was measured with α-LA (≤ 10,000 Da) among α-LA, β-LG, and IL-6. The low level of NO production was similar with α-LA, β-LG, and BSA but not with α-LA (≤ 10,000 Da). These potential peptides from whey protein hydrolysates could be used for food, medicinal, and industrial applications.

Anti-inflammation and hangover relief effects of Schisandra chinensis (SC) and Lycium chinense (LC) water extracts depending on drug processing and fermentation (포제 및 발효 가공에 따른 오미자와 구기자 물 추출물의 항염증 및 숙취해소 효과)

  • Kim, Ha-Rim;Kim, Sang-Jun;Kim, Sol;Kim, HongJun;Jeong, Seung-Il;Yu, Kang-Yeol;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.26 no.4
    • /
    • pp.295-306
    • /
    • 2018
  • Schisandra chinensis (SC) and Lycium chinense (LC) were widely distributed in Asia and the fruit has been used traditionally for medicinal herbs. The processing method was solid-state fermentation using Aspergillus oryzae for 48 h after stir-frying treatment at $220^{\circ}C$ for 12 min. In this study, in vitro the anti-inflammatory effect and in vivo hangover reduction were compared to unprocessed SC and LC water extract. Anti-inflammatory effects have been evaluated in pro-inflammatory mediators which were secreted by lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Nitric oxide (NO) was determined using Griess reaction. Proinflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$ and interleukin $(IL)-1{\beta}$ were measured by enzyme-linked immunosorbent assays (ELISA). Alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were compared to processed SC or LC and mixtures thereof (1:1). In vivo study was compared to hangover relief in alcohol-fed mice. After administering a mixture of SC and LC (300 mg/kg) water extract (1:1), mice were fed 3 g/kg of ethanol. Serum was collected at 1, 3, and 5 h intervals to analyze ethanol and acetaldehyde levels using a colorimetric assay kit. The processed SC and LC water extracts compared to raw materials significantly inhibited LPS-induced NO and inflammatory cytokine production in RAW 264.7 cells. The results of the hangover mouse model are also consistent with anti-inflammatory effects. These results suggest that processed SC and LC extracts may be functional materials for the treatment of inflammation and hangover.

Exploration of β-Glucuronidase Activity of Lactic Acid Bacteria Isolated from Kimchi (김치에서 분리된 젖산균의 β-glucuronidase 활성 탐색)

  • Kim, Eun-Jung;Shin, In-Ung;Kwun, Se-Young;Park, Eun-Hee;Yi, Jae-Hyoung;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.434-440
    • /
    • 2019
  • Lactic acid bacteria (LAB) isolated from kimchi were studied for their ${\beta}$-glucuronidase activity. Among the 156 strains tested, 52 strains utilized glucuronic acid as a carbon source and their intracellular ${\beta}$-glucuronidase activities were significantly higher than their extracellular activities. Leuconostoc mesenteroides KFRI 73007 isolated from turnip kimchi exhibited the highest intracellular ${\beta}$-glucuronidase activity of $0.77{\pm}0.01U/mg$ protein, which was further increased to $1.14{\pm}0.01U/mg$ protein under optimized reaction conditions (pH 7, $37^{\circ}C$). The activity of ${\beta}$-glucuronidase was notably decreased by the addition of divalent cations, and glucuronic acid was the best carbon source to produce ${\beta}$-glucuronidase in Leu. mesenteroides KFRI 73007.