References
- Abraham, P., Wilfred, G. and Cathrine, S. P. (1999) Oxidative damage to the lipids and proteins of the lungs, testis and kidney of rats during carbon tetrachloride intoxication. Clin. Chim. Acta 289, 177-179 https://doi.org/10.1016/S0009-8981(99)00140-0
- Achudume, A. C. (1991) Effects of DMSO on carbon tetrachloride induced hepatotoxicity in mice. Clin. Chim. Acta 200, 57-58 https://doi.org/10.1016/0009-8981(91)90335-A
- Adang, A. E., Brussee, J., van der Gen, A. and Mulder, G. J. (1990) The glutathione-binding site in glutathione Stransferases. Investigation of the cysteinyl, glycyl and gammaglutamyl domains. Biochem J. 269, 47-54 https://doi.org/10.1042/bj2690047
- Ansari, R. A., Tripathi, S. C., Patnaik, G. K. and Dhawan, B. N. (1991) Antihepatotoxic properties of Picroliv, an active fraction from rhizomes of Picorrhiza kurroa. J. Ethnopharmacol. 34, 61-68 https://doi.org/10.1016/0378-8741(91)90189-K
- Arena J. M. and Drew, R. H. (1986) Poisoning: Toxicology, Symptoms, Treatments. 5th ed., pp. 258-259, Charles C. Tomas Springfield IL
- Blois, M. S. (1958) Antioxidant determination by use of a stable free radical. Nature 29, 1199-1200
- Bonaventura, J., Schroeder, W. A. and Fang, S. (1972) Human erythrocyte catalase: an improved method of isolation and a revaluation of reported properties. Arch. Biochem. Biophys. 150, 606-617 https://doi.org/10.1016/0003-9861(72)90080-X
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1986) Glossary of India's medicinal plants. Publication and Information Directorate, CSIR. New Delhi, 44
- Constan, A. A., Sprankle, C. S., Peters, J. M., Kedderis, G. L., Everitt, J. I., Wong, B. A., Gonzalez, F. L. and Butterworth, B. E. (1999) Metabolism of chloroform by Cyt P4502E1 is required for induction of toxicity in liver, kidney and nose of male mice. Toxicol. Appl. Pharmacol. 160, 120-126 https://doi.org/10.1006/taap.1999.8756
- Diez-Fernandez, C., Sanz, N. and Cascales, M. (1996) Changes in glucose-6-phosphate dehydrogenase and malic enzyme gene expression in acute hepatic injury induced by thioacetamide. Biochem. Pharmacol. 51, 1159-1163 https://doi.org/10.1016/0006-2952(96)00030-5
- Esterbauer, H. and Cheeseman, K. H. (1990) Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4- hydroxynonenal. Methods Enzymol. 186, 407-421 https://doi.org/10.1016/0076-6879(90)86134-H
- Ghosh, A. and Biswas, K. (1973) Bhartiya Banausadhi (ed.) A. Chatterjee, Calcutta University Press, India. 2, 332-334
- Gokalp, O., Gulle, K., Sulak, O., Cicek, E. and Altuntos, I. (2003) The effects of methidathione on liver: role of vitamins E and C. Toxicol. Ind. Health 19, 63-67 https://doi.org/10.1191/0748233703th176oa
- Habig, W. H. and Jakoby, W. B. (1974) Glutathione STransferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249, 7130-139
- Hayes, J. D. and Pulford, D. J. (1995) The glutathione S transferase supergene family: Regulation of glutathione S transferase and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Reviews Biochem. Mole. Biol. 30, 445-600 https://doi.org/10.3109/10409239509083491
- Kakkar, P., Das, B. and Viswanathan, P. N. (1984) A modified spectrophotometric assay of superoxide dismutase. Ind. J. Biochem. Biophys. 21, 130-132
- Kind, P. R. N. and King, E. J. (1954) Estimation of plasma phosphatase by determination of hydrolyzed phenol with antipyrine. J. Clin. Path. 7, 322-326 https://doi.org/10.1136/jcp.7.4.322
- Kirtikar, K. R. and Basu, B. D. (1935) Indian Medicinal Plants, Blatter, E., Caius, J. F., Mhaskarr, R. S. (eds.) pp. 809-811, Probasi Press, Calcutta, India
- Kluwe, W. M., McCormack, K. M. and Hook, J. B. (1978) Selective modification of the renal and the hepatic toxicities of chloroform by induction of drug-metabolizing enzyme systems in kidney and liver. J. Pharmacol. Exp. Ther. 207, 566-573
- Kurose, I., Higuchi, H., Miura, S., Saito, H., Watanabe, N., Hokari, R., Hirokawa, M., Takaishi, M., Zeki, S., Nakamura, T., Ebinuma, H., Kato, S. and Ishii, H. (1997) Oxidative stressmediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology 25, 368-378 https://doi.org/10.1002/hep.510250219
- Kyle, M. E., Miccadei, S., Nakae, D. and Farber, J. L. (1987) Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem. Biophys. Res. Commun. 149, 889-896 https://doi.org/10.1016/0006-291X(87)90491-8
- Larson, J. L., Wolf, D. C. and Butterworth, B. E. (1993) Acute hepatotoxic and nephrotoxic effects of chloroform in male F- 344 rats and female B6C3F1 mice. Fundam. Appl. Toxicol. 20, 302-315 https://doi.org/10.1006/faat.1993.1040
- Lind, R. C., Begay, C. K. and Gandolfi, A. J. (2000) Hepatoprotection by dimethyl sulfoxide. III. Role of inhibition of the bioactivation and covalent bonding of chloroform. Toxicol. Appl. Pharmacol. 166, 145-150 https://doi.org/10.1006/taap.2000.8949
- Ljungman, A. G., Grum, C. M., Deeb, G. M., Bolling, S. F. and Morganroth, M. L. (1991) Inhibition of cyclooxygenase metabolite production attenuates ischemia-reperfusion lung injury. Am. Rev. Respir Dis. 143, 610-617 https://doi.org/10.1164/ajrccm/143.3.610
- Malhi, H., Irani, A. N., Gagandeep, S. G. and Gupta, S. (2002) Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J. Cell Sci. 115, 2679-2688
- Masuda, Y., Yano, I. and Murano, T. (1980) Comparative studies on the hepatotoxic action of chloroform and related halogenomathanes in normal and Phenobarbital pretreated animals. J. Pharmacobiodyn 3, 535-544
- Nishikimi, M., Rao, N. A. and Yagi, K. (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849-854 https://doi.org/10.1016/S0006-291X(72)80218-3
- Paoletti, F., Aldinucci, D., Mocalli, A. and Caparrini, A. (1986) A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154, 536-541 https://doi.org/10.1016/0003-2697(86)90026-6
- Reitman, S. and Frankel, S. A. (1957) Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transminases. Am. J. Clin. Path. 28, 56-63 https://doi.org/10.1093/ajcp/28.1.56
- Sarkar, K., Ghosh, A. and Sil, P. C. (2005) Preventive and curative role of a 43 kD protein from the leaves of the herb Cajanus indicus on thioacetamide induced hepatotoxicity in vivo. Hepatol. Res. 33, 39-49 https://doi.org/10.1016/j.hepres.2005.06.007
- Smith, J. H., Maita, K., Sleight, S. D. and Hook, J. B. (1983) Mechanism of chloroform nephrotoxicity. I. Time course of chloroform toxicity in male and female mice. Toxicol. Appl. Pharmacol. 70, 467-479 https://doi.org/10.1016/0041-008X(83)90164-3
- Soni, M. G., Raniah, S. K., Mumtaz, M. M., Clewell, H. and Mehendale, H. M. (1999) Toxicant inflicted injury and stimulated tissue repair are opposing toxicodynamic forces in predictive toxicology. Regul. Pharmacol. Toxicol. 19, 165-174
- Stevens, J. L. and Anders, W. M. (1981) Effects of cysteine diethyl maleate and Phenobarbital treatments on the hepatotoxicity of [1H] and [2H] chloroform. Chem. Biol. Interact. 37, 207-217 https://doi.org/10.1016/0009-2797(81)90178-2
- Testai, E., Di Marzio, S., di Domenico, A., Piccardi, A. and Vittozzi, L. (1995) An in vitro investigation of the reductive metabolism of chloroform. Arch. Toxicol. 70, 83-88 https://doi.org/10.1007/BF02733667
- Thakore, K. N. and Mehendale, H. M. (1994) Effect of Phenobarbital and mirex pretreatments on carbon tetrachloride auto protection. Toxicol. Pathology 22, 291-299 https://doi.org/10.1177/019262339402200307
- Tomasi, A., Albano, E., Biasi, F., Slater, T. F., Vannini, V. and Dianzani, M. U. (1985) Activation of chloroform and related trihalomethanes to free radical intermediates in isolated hepatocytes and in the rat in vivo as detected by the ESR-spin trapping technique. Chem. Biol. Interact. 55, 303-316 https://doi.org/10.1016/S0009-2797(85)80137-X
Cited by
- Attenuation of Acetaminophen-Induced Hepatotoxicity In Vivo and In Vitro by a 43-kD Protein Isolated from the HerbCajanus indicusL vol.17, pp.6, 2007, https://doi.org/10.1080/15376510601031919
- Cajanus indicus leaf protein: Beneficial role in experimental organ pathophysiology. A review vol.18, pp.4, 2011, https://doi.org/10.1016/j.pathophys.2011.05.001
- Hypocholesterolemic effect of stilbenes containing extract-fraction from Cajanus cajan L. on diet-induced hypercholesterolemia in mice vol.15, pp.11, 2008, https://doi.org/10.1016/j.phymed.2008.03.002
- A 43 kD protein from the leaves of the herb Cajanus indicus L. modulates doxorubicin induced nephrotoxicity via MAPKs and both mitochondria dependent and independent pathways vol.94, pp.6, 2012, https://doi.org/10.1016/j.biochi.2012.03.003
- Protective effect of stilbenes containing extract-fraction from Cajanus cajan L. on Aβ25–35-induced cognitive deficits in mice vol.467, pp.2, 2009, https://doi.org/10.1016/j.neulet.2009.10.029
- Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters vol.53, 2013, https://doi.org/10.1016/j.fct.2012.12.029
- Cajanus cajan Linn. (Leguminosae) prevents alcohol-induced rat liver damage and augments cytoprotective function vol.118, pp.3, 2008, https://doi.org/10.1016/j.jep.2008.05.010
- A Protein from Cajanus indicus Spreng Protects Liver and Kidney against Mercuric Chloride-Induced Oxidative Stress vol.31, pp.9, 2008, https://doi.org/10.1248/bpb.31.1651
- Traditional extract of Pithecellobium dulce fruits protects mice against CCl4 induced renal oxidative impairments and necrotic cell death vol.19, pp.2, 2012, https://doi.org/10.1016/j.pathophys.2012.02.001
- Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-κB pathway: Role of a novel plant protein vol.177, pp.2, 2009, https://doi.org/10.1016/j.cbi.2008.09.006
- Galactosamine-induced hepatotoxic effect and hepatoprotective role of a protein isolated from the herbCajanus indicus L in vivo vol.21, pp.1, 2007, https://doi.org/10.1002/jbt.20154
- Negative-pressure cavitation extraction for the determination of flavonoids in pigeon pea leaves by liquid chromatography–tandem mass spectrometry vol.1216, pp.18, 2009, https://doi.org/10.1016/j.chroma.2009.02.073
- Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea vol.23, pp.4, 2015, https://doi.org/10.1016/j.jfda.2015.06.008
- Doxorubicin-induced neurotoxicity is attenuated by a 43-kD protein from the leaves ofCajanus indicusL. via NF-κB and mitochondria dependent pathways vol.46, pp.6, 2012, https://doi.org/10.3109/10715762.2012.678841
- Negative-pressure cavitation extraction of cajaninstilbene acid and pinostrobin from pigeon pea [Cajanus cajan (L.) Millsp.] leaves and evaluation of antioxidant activity vol.128, pp.3, 2011, https://doi.org/10.1016/j.foodchem.2011.02.079
- Antioxidant and anti-inflammatory effects of pigeon pea (Cajanus cajan L.) extracts on hydrogen peroxide- and lipopolysaccharide-treated RAW264.7 macrophages vol.3, pp.12, 2012, https://doi.org/10.1039/c2fo30120b
- Involvement of both intrinsic and extrinsic pathways in hepatoprotection of arjunolic acid against cadmium induced acute damage in vitro vol.283, pp.2-3, 2011, https://doi.org/10.1016/j.tox.2011.03.006
- (+)- and (−)-Cajanusine, a Pair of New Enantiomeric Stilbene Dimers with a New Skeleton from the Leaves of Cajanus cajan vol.16, pp.1, 2014, https://doi.org/10.1021/ol403211a
- A 43kD protein from the herb, Cajanus indicus L., protects against fluoride induced oxidative stress in mice erythrocytes vol.14, pp.1, 2007, https://doi.org/10.1016/j.pathophys.2007.01.001
- Amelioration of galactosamine-induced nephrotoxicity by a protein isolated from the leaves of the herb, Cajanus indicus L vol.7, pp.1, 2007, https://doi.org/10.1186/1472-6882-7-11