DOI QR코드

DOI QR Code

Isolation and Characterization of Actinomycete Strain BK185 Possessing Antifungal Activity against Ginseng Root Rot Pathogens

인삼 뿌리썩음병균에 항균활성이 있는 방선균 BK185의 분리 및 특성

  • Kim, Byung-Yong (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Bae, Mun-Hyung (National Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Kim, Sung-Il (Institute of Ginseng and Medicinal Plants Research, Gangwon Agricutlural Research and Extension Services) ;
  • Kim, Wan-Kyu (Agricultural Microbiology Division, National Academy of Agricultural Science) ;
  • Oh, Dong-Chan (National Products Research Institute, College of Pharmacy, Seoul National University) ;
  • Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science)
  • 김병용 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 배문형 (강원도 농업기술원 인삼약초연구소) ;
  • 안재형 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김성일 (서울대학교 약학대학 천연물연구소) ;
  • 김완규 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 오동찬 (강원도 농업기술원 인삼약초연구소) ;
  • 송재경 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2014.10.08
  • Accepted : 2014.10.31
  • Published : 2014.12.31

Abstract

Ginseng (Panax ginseng C. A. Meyer) is an economically valuable pharmaceutical crop in Korea. In order to find promising biocontrol agents for soil-borne fungal pathogens which infect ginseng roots, we have isolated actinomycete, BK185 from soil. The isolate was investigated for the antifungal activity against to ginseng rot pathogens prior to testing genetic and chemical properties. The strain was identified as Streptomyces sp. using phylogenetic analysis based on 16S rRNA gene sequence. The most closely related species was S. sporoclivatus and S. geldanamycininus with high similarities (>99%). The isolate, BK185 showed positive reaction for PCR detection targeting biosynthetic gene clusters of PKS (Type-I polyketide synthase) and NRPS (Non-ribosomal polypeptide synthetase) genes. Major metabolite from the BK185 was analyzed by The LC/MS and identified to geldamycin, which was known to contained broad antibacterial, antifungal or anticancer activities. The results provide evidences that the strain, BK185 can be promising biocontrol agent for ginseng organic farming.

인삼은 한국을 포함한 여러 국가에서 경제적으로 중요한 약용작물이다. 인삼에서 흔히 발생하는 뿌리썩음 병균을 친환경적으로 방제하기 위해서 병원균에 대해서 항균성이 있는 미생물을 탐색하였다. 토양에서 분리한 방선균 BK185균주는 인삼에 뿌리썩음병을 일으키는 병원균들(Cylindrocarpon, Fusarium, Rhizoctonia, Sclerotinia)에 대해서 높은 항균 활성을 보였다. 선발 균주 BK185의 동정을 위해서 16S rRNA 유전자 염기서열을 분석한 결과 Streptomyces 속에 해당하는 것으로 분석되었다. 특히, S. sporoclivatus 및 S. geldanamycininus와 99.6% 이상으로 매우 높은 유사도를 보였다. 선발 균주가 생산하는 2차 대사물질을 예측하기 위해서, 생산에 관여하는 생합성 유전자인PKS (Type-I polyketide synthase)와 NRPS (Non-ribosomal polypeptide synthetase) 유전자를 PCR반응을 통해 검출하였다. 검출된 유전자는 클로닝을 통해 염기서열을 결정하였다. 또한 최적 배양조건하에서 생산된 대사물질을 LC/MS로 분석하였고, geldanamycin 계열의 항생물질이 생산됨을 확인하였다.

Keywords

References

  1. Ayuso-Sacido, A. and Genilloud, O. (2005). New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49: 10-24. https://doi.org/10.1007/s00248-004-0249-6
  2. Berdy, J. (2005) Bioactive microbial metabolites: A personal view. J. Antibiot. (Tokyo). 58: 1-26. https://doi.org/10.1038/ja.2005.1
  3. Chenna, R., H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, D.G. Higgins and J.D. Thompson (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 31(13): 3497-3500. https://doi.org/10.1093/nar/gkg500
  4. DeBoer C., Meulman P. A., Wnuk R.J. and Peterson D.H. (1970) Geldanamycin, a new antibiotic. J. Antibiot. 23: 442-447. https://doi.org/10.7164/antibiotics.23.442
  5. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  6. Fu, J., J. Sun, R. Zhou and X. Yan (2012) Molecular detection of Cylindrocarpon destructans in infected chinese ginseng roots and soil. Afr. J. Biotechnol. 11(42): 9955-9960.
  7. Goodfellow, M., Kumar, Y., Labeda, D. P. and Sembiring, L. (2007). The Streptomyces violaceusniger clade: a home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek 92: 173-199. https://doi.org/10.1007/s10482-007-9146-6
  8. Goodfellow, M. (2010) Selective isolation of Actinobacteria, pp. 13-27. In R. H. Baltz, Demain A. L., Davies, J. E. (ed.), Manual of industrial microbiology and biotechnology ASM Press, Washington, DC.
  9. Guo, R., X. Liu, S. Li and Z. Miao (2009) In vitro inhibition of fungal root-rot pathogens of Panax notoginseng by rhizobacteria. Plant Pathol. J. 25(1): 70-76. https://doi.org/10.5423/PPJ.2009.25.1.070
  10. Hopwood, D. A. (2006) Soil to genomics: The Streptomyces chromosome. Annu. Rev. Genet. 40: 1-23. https://doi.org/10.1146/annurev.genet.40.110405.090639
  11. Jang, C.-S., J. Lee, S. Kim, J. Song, S. Yoo and H. Kim (2005) Specific detection of root rot pathogen, cylindrocarpon destructans, using nested pcr from ginseng seedlings. Research Plant Disease, 11(1): 48-55. https://doi.org/10.5423/RPD.2005.11.1.048
  12. Jang, C.S., J.H. Lim, M.W. Seo, J.Y. Song and H.G. Kim (2010) Direct detection of Cylindrocarpon destructans, root rot pathogen of ginseng by nested pcr from soil samples. Mycobiology, 38(1): 33-38. https://doi.org/10.4489/MYCO.2010.38.1.033
  13. Jang, Y.L. and Y.H. Kim (2011) Biocontrol efficacies of Bacillus species against Cylindrocarpon destructans causing ginseng root rot. Plant Pathol. J. 27(4): 333-341. https://doi.org/10.5423/PPJ.2011.27.4.333
  14. Kim, B.-Y., T.D. Zucchi, H.-P. Fiedler and M. Goodfellow (2012) Streptomyces cocklensis sp. nov., a dioxamycin-producing actinomycete. Int. J. Syst. Evol. Microbiol., 62(2): 279-283. https://doi.org/10.1099/ijs.0.029983-0
  15. Kumar, S., K. Tamura and M. Nei (2004) Mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinformatics 5(2): 150-163. https://doi.org/10.1093/bib/5.2.150
  16. Lee, S.-G. (2004) Fusarium species associated with ginseng (Panax ginseng) and their role in the root-rot of ginseng plant. Res. Plant Dis., 10(4): 248-259. https://doi.org/10.5423/RPD.2004.10.4.248
  17. Rascher A., Hu Z., Viswanathan N., Schirmer A., Reid R., Nierman W. C., Lewis M. and Hutchinson C. R. (2003) Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602. FEMS Microbiol. Lett. 218(2):223-30. https://doi.org/10.1016/S0378-1097(02)01148-5
  18. Rothrock, C.S. and Gottlieb, D. (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can. J. Microbiol., 30, 1440-1447. https://doi.org/10.1139/m84-230
  19. Saitou, N. and M. Nei (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4): 406-425.
  20. Seifert, K., C. McMullen, D. Yee, R. Reeleder and K. Dobinson (2003) Molecular differentiation and detection of ginsengadapted isolates of the root rot fungus Cylindrocarpon destructans. Phytopathology 93(12): 1533-1542. https://doi.org/10.1094/PHYTO.2003.93.12.1533
  21. Tapi, A., M. Chollet-Imbert, B. Scherens and P. Jacques (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl. Microbiol. Biotechnol. 85(5): 1521-1531. https://doi.org/10.1007/s00253-009-2176-4
  22. Toyomura K., Saito T., Emori S., Matsumoto I., et al. (2012) Effects of Hsp90 inhibitors, geldanamycin and its analog, on ceramide metabolism and cytotoxicity in PC12 cells. J. Toxicol. Sci., 37: 1049-1057 https://doi.org/10.2131/jts.37.1049
  23. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr and H.G. Trueper (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464. https://doi.org/10.1099/00207713-37-4-463