• 제목/요약/키워드: mechanical loads

검색결과 1,774건 처리시간 0.027초

디젤엔진에서 이색법을 이용한 화염온도와 Soot의 계측기술에 관한 연구 (A Study on a Technique of the Measurement of Flame Temperature and Soot Using the Two-color Method in Diesel Engines)

  • 이태원;이선봉
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.3007-3014
    • /
    • 1996
  • The instantaneous flame temperature and soot formation and oxidation in a D.I. diesel engine are measured using a two-color method. The proposed method based on the continuous spectral radiation from the soot particles in the flame is applicable to industrial diesel engines without major modifications of their main characteristics. Measurements are performed at one location inside the combustion chamber of a D.I. diesel engine. Effects of different engine speeds and loads on flame temperature and KL factor which is an index of soot concentration were examined. Little temperature change were observed with increasing rpm, while increased with loads. The higher the flame temperature is, the lower the KL factor is.

국부하중 을 받는 직교이방성 원통셀 의 해석 (Analysis of Orthotropic Cylindrical Shells Subjected to Localized Loads)

  • 이영신;박정화;옹장우
    • 대한기계학회논문집
    • /
    • 제8권5호
    • /
    • pp.408-415
    • /
    • 1984
  • 본 연구에서는 기존연구에 비하여 해의 형태가 간단하고 비교적 오차가 적은 해를 구하기 위하여 MorleyKoiter의 등방성 원통셸의 변위 및 응력상태를 2중 Fourier 급수를 적용하여 해석하였으며 수치예를 통하여 이들 값의 직교이방특성 및 셸형상에 따른 영향을 고찰하였다.

박판의 재인발 가공 에서의 한계인발비 및 성형하중 의 예측 에 관한 연구 (A Study on the Prediction of Limit Drawing Ratio And Forming Load in Redrawing of Sheet Metal)

  • 박장호;양동열
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.249-256
    • /
    • 1983
  • The study is concerned with the analysis of sheet metal for the prediction of limit drawing ratio and forming load. The direct redrawing process is analyzed by using an equilibrium approach and strain increment theory both for non-workhardening material and for workhardening material. Computations are carried out numerically for the workhardening case. Limit drawing ratios are predicted for some chosen variables. The forming loads are also computed with respect to punch travel. Then the predicted loads are compared with the experimental results. For ordinary lubricated conditions, the comparison shows reasonable agreement between the theory and experimental observation. It is also shown that limit drawing ration can be increased by using a greater die angle and proper lubrication significantly reduces the punch load. Finally numerical results show that material of greater R-value and strain-hardening exponent(n)is better for direst redrawing of sheet metal.

절삭가공시 집형성의 유한요소 해석에 관한 연구 (A Study on the Finite Element Analysis of Chip Formation in Machining)

  • 김남용;박종권;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.973-976
    • /
    • 1997
  • Process behavior in metal cutting results from the chip formation process which is not easily observable and measurable during machining. By means of the finite element method chip formation in orthogonal metal cutting is modeled. The reciprocal interaction between mechanical and thermal loads is taken into consideration by involving the thermo-viscoplastic flow behavior of workpiece material. Local and temporal distributions of stress and temperature in the cutting zone are calculated depending on the cutting parameters. The calculated cutting forces and temperatures are compared with the experimental results obtarned from orthogonal cutting of steel AISl 4140. The model can be applied in process design for selection of appropriate tool-workpiece combination and optimum cutting conditions in term of mechanical and thermal loads.

  • PDF

용접형 대차 프레임의 피로강도 보강에 관한 연구 (Reinforcement for Fatigue Fracture of Welded Bogie Frames)

  • 장득열;전형용
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.145-151
    • /
    • 2016
  • We consider the position and thickness of reinforcement with respect to fatigue fracture of welded bogie frames and propose an appropriate reinforcement method for many cases. The bogie frame is usually designed in accordance with JIS and KS, and operates under harsh load conditions: dynamic loads generated while driving, various loads during operation, and large load differences between loading and unloading. Consequently, fatigue failure often occurs throughout the bogie frame. We modelled the reinforcing method using ANSYS software and reviewed stress in the vicinity of common fatigue failure sites through computer simulation, optimizing the position and thickness of reinforcement.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

상온스웨이징 나사 철근 이음한 철근콘크리트 인장부재의 피로거동 (Fatigue Behavior of Tensile RC Members Jointed by the Mechanical Coupler)

  • 정영화;박용석
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.127-134
    • /
    • 2006
  • As material needs have been increasing with recent economic growth, it is a current tendency that the magnitude of load applied to structure has been rising. With improved technique of product materials, steel and concrete have been stranger than ever so the danger of fatigue damage increases as permanent action of repeated loads. In case of deformed steel bars widely used in reinforced concrete structure, when they are product in factory, there will exist same parts connecting the steels. Such connections are easy to be weakened by permanent action of repeated loads. It is a real condition in Korea that there is lack of research of it. As a result of estimating fatigue characteristic of Pressure Welded joints with the steels that are oftenly used and producted in domestic it is showed that there are no remarkable difference in fatigue strength. Because there is no detail which is refered in Civil Specification, this paper will be the basic data being added in later Specification.

  • PDF

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (II) - 구조예제 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (II) - Structural Examples -)

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1061-1069
    • /
    • 2005
  • In part I of this papter Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is developed to conduct optimization for nonlinear behavior structures. The method/algorithm is also verified to show its convergency and optimality. In this present paper, the NROESL algorithm is applied to several structural problems with geometric and/or material nonlinearity. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

용접부 중앙에 표면균열이 존재하는 인장 평판에 대한 강도 불일치 한계하중 해석 및 간략 J-적분 예측 (Mis-Match Limit Load Analyses and Approximate J-Integral Estimates for Similar Metal Weld with Weld-Center Crack Under Tension Load)

  • 송태광;김윤재;김종성;진태은
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.411-418
    • /
    • 2008
  • In this work, the effect of strength mismatch on plastic limit loads is quantified for similar metal weld plates with cracks under tension load, via three-dimensional, small strain elastic-perfectly plastic finite element analyses. Relevant variables related to plate geometry and crack length are systematically varied, in addition to the weld width. An important finding is that mis-match limit loads can be uniquely quantified through strength mis-match ratio and one geometry-related parameter. Based on the proposed limit load solutions, reference stress based J-integral estimates is also investigated. When the reference stress is defined by the mis-match limit load, predicted J-integral values agree overall well with FE results.