• Title/Summary/Keyword: mechanical and thermal behavior

Search Result 986, Processing Time 0.041 seconds

Numerical Verification for Plane Failure of Rock Slopes Using Implicit Joint-Continuum Model (내재적 절리-연속체 모델을 이용한 암반사면 평면파괴의 수치해석적 검증)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.125-132
    • /
    • 2020
  • Embedded joints in the rock mass are a major constituent influencing its mechanical behavior. Numerical analysis requires a rigorous modeling methodology for the rock mass with detailed information regarding joint properties, orientation, spacing, and persistence. This paper provides a mechanical model for a jointed rock mass based on the implicit joint-continuum approach. Stiffness tensors for rock mass are evaluated for an assemblage of intact rock separated by sets of joint planes. It is a linear summation of compliance of each joint sets and intact rock in the serial stiffness system. In the application example, kinematic analysis for a planar failure of rock slope is comparable with empirical daylight envelope and its lateral limits. Since the developed implicit joint-continuity model is formulated on a continuum basis, it will be a major tool for the numerical simulations adopting published plenteous thermal-hydro-chemical experimental results.

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

A Study on the Residual Mechanical Properties of Fiber Reinforced Concrete with High Temperature and Load (고온 및 하중에 따른 섬유보강 콘크리트의 잔존 역학적 특성에 관한 연구)

  • Kim, Young-Sun;Lee, Tae-Gyu;Nam, Jeong-Soo;Park, Gyu-Yeon;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 0.55, 0.42 and 0.35 exposed to high temperature are compared with those obtained in fiber reinforced concrete with similar characteristics ranging from 0.05% to 0.20% polypropylene (PP) fiber volume percentage. Also, factors including pre-load levels of 20% and 40% of the maximum load at room temperature are considered. Outbreak time, thermal strain, length change, and mass loss were tested to determine compressive strength, modulus of elasticity, and energy absorption capacity. From the results, in order to prevent the explosive spalling of 50 MPa grade concretes exposed to high temperature, more than 0.05 vol. % of PP fibers is needed. Also, the cross-sectional area of PP fiber can influence the residual mechanical properties and spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and brittle failure tendency.

Repetitive Electroacupuncture Alleviate Neuropathic Pain in Association with Suppressing Activation of Spinal Glial Cells (반복적인 전침 처치의 척수 교세포 활성 억제를 통한 신경병증성 통증 억제 효과)

  • Lee, Heun Joo;Jeong, Bo Eun;Song, Da Eun;Park, Min Young;Koo, Sungtae
    • Korean Journal of Acupuncture
    • /
    • v.30 no.1
    • /
    • pp.56-63
    • /
    • 2013
  • Objectives : Effects of repetitive electroacupuncture(EA) on the pain behavior and activation of spinal glial cells were examined in the rat model of neuropathic pain. Methods : Twenty one adult male Sprague-Dawley rats were randomly assigned into 3 groups(control group, SP6 group, ST36+GB34 group). Neuropathic pain was induced by tight ligation of L5 spinal nerve. Mechanical and thermal hypersensitivity of hind paw were tested. Immunohistochemistry was performed in spinal cord L5/6 of all groups. EA was treated once in a day from the $5^{th}$ day after surgery. Results : EA treatments applied to ST36 and GB34 reduced significantly both of mechanical and thermal hypersensitivity after 3 times of treatment throughout the experiments. In the SP6 group, the analgesic effect was also shown after 7 times of treatment. Immunohistochemistry demonstrated inhibition of microglia and astrocyte activation in the spinal cord L5/6 dorsal horn in the ST36+GB34 group. Conclusions : The present results suggest that repetitive EA exert strong analgesic effect on neuropathic pain. These analgesic effects in neuropathic pain are associated with suppressing the activation of microglia and astrocyte.

Comparison of transition temperature range and phase transformation behavior of nickel-titanium wires (니켈-타이타늄 호선의 상전이 온도 범위와 상전이 행동 비교)

  • Lee, Yu-Hyun;Lim, Bum-Soon;Lee, Yong-Keun;Kim, Cheol-We;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.40-49
    • /
    • 2010
  • Objective: The aim of this research was to evaluate the mechanical properties (MP) and degree of the phase transformation (PT) of martensitic (M-NiTi), austenitic (A-NiTi) and thermodynamic nickel-titanium wire (T-NiTi). Methods: The samples consisted of $0.016\;{\times}\;0.022$ inch M-NiTi (Nitinol Classic, NC), A-NiTi (Optimalloy, OPTI) and T-NiTi (Neo-Sentalloy, NEO). Differential scanning calorimetry (DSC), three-point bending test, X-ray diffraction (XRD), and microstructure examination were used. Statistical evaluation was undertaken using ANOVA test. Results: In DSC analysis, OPTI and NEO showed two peaks in the heating curves and one peak in the cooling curves. However, NC revealed one single broad and weak peak in the heating and cooling curves. Austenite finishing ($A_f$) temperatures were $19.7^{\circ}C$ for OPTI, $24.6^{\circ}C$ for NEO and $52.4^{\circ}C$ for NC. In the three-point bending test, residual deflection was observed for NC, OPTI and NEO. The load ranges of NC and OPTI were broader and higher than NEO. XRD and microstructure analyses showed that OPTI and NEO had a mixture of martensite and austenite at temperatures below Martensite finishing ($M_f$). NEO and OPTI showed improved MP and PT behavior than NC. Conclusions: The mechanical and thermal behaviors of NiTi wire cannot be completely explained by the expected degree of PT because of complicated martensite variants and independent PT induced by heat and stress.

Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel (적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계)

  • An, Woojin;Park, Junhyeok;Lee, Jungsub;Choe, Jungho;Jung, Im Doo;Yu, Ji-Hun;Kim, Sangshik;Sung, Hyokyung
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

Carbon diffusion behavior and mechanical properties of carbon-doped TiZrN coatings by laser carburization (레이저 침탄된 TiZrN 코팅에서 탄소확산거동과 기계적 특성)

  • Yoo, Hyunjo;Kim, Taewoo;Kim, Seonghoon;Jo, Ilguk;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • This study was investigated in carbon diffusion behavior of laser-carburized TiZrN coating layer and the changes of mechanical properties. The carbon paste was deposited on TiZrN coatings, and the laser was irradiated to carburize into the coatings. The XRD peak corresponding to the (111) plane shifted to a lower angle after the carburization, showing the lattice expansion by doped carbon. The decreased grain size implied the compression by the grain boundary diffusion of carbon. The XPS spectra for the bonding states of carbon was analyzed that carbon was substitute to nitrogen atoms in TiZrN, as carbide, through the thermal energy of laser. In addition, the combination of sp2 and sp3 hybridized bonds represented the formation of an amorphous carbon. The cross-sectional TEM image and the inverse FFT of the TiZrN coating after carburizing were observed as the wavy shape, confirming the amorphous phase located in grain boundaries. After the carburization, the hardness increased from 34.57 GPa to 38.24 GPa, and the friction coefficient decreased by 83 %. In particular, the ratio of hardness and elastic modulus (H/E) which is used as an index of the elastic recovery, increased from 0.11 to 0.15 and the wear rate improved by 65 %.

Study on Improvement of Mechanical Property, Oxidation and Erosion Resistance of SiC Matrix Ceramic Composites Reinforced by Hybrid Fabric Composed of SiC and Carbon Fiber (탄화규소섬유와 탄소섬유 하이브리드 직물을 강화재로 한 SiC 매트릭스 세라믹복합재의 기계적물성, 산화 및 삭마 저항성 개선 연구)

  • Yoon, Byungil;Kim, Myeongju;Kim, Jaesung;Kwon, Hyangjoo;Youn, Sungtae;Kim, Jungil
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.148-157
    • /
    • 2019
  • In this study, $C_f/SiC$, $SiC_f/SiC$ and $C_f-SiC_f/SiC$ ceramic composites reinforcing carbon fiber, SiC fiber and hybrid fiber were fabricated by hybrid TGCVI and PIP process. After the thermal shock cycle, 3-point bending and Oxy-Acetylene torch test, their mechanical behavior, oxidation and erosion resistance were evaluated. The $C_f/SiC$ composite showed a decrease in mechanical property along with increasing temperature, a pseudo-ductile fracture mode and a large quantity of erosion. The $SiC_f/SiC$ composite exhibited stronger mechanical property and lower erosion rate compared to the $C_f/SiC$, but brittle fracture mode. On the other hand, hybrid type of $C_f-SiC_f/SiC$ composite gave the best mechanical property, more ductile failure mode than the $SiC_f/SiC$, and lower erosion rate than the $C_f/SiC$. During the Oxy-Acetylene torch test, the $SiO_2$ formed by reaction of the SiC matrix with oxygen prevented further oxidation or erosion of the fibers for $C_f-SiC_f/SiC$ and $SiC_f/SiC$ composites particularly. In conclusion, if a hybrid composite with low porosity is prepared, this material is expected to have high applicability as a high temperature thermo-structural composite under high temperature oxidation atmosphere by improving low mechanical property due to the oxidation of $C_f/SiC$ and brittle fracture mode of $SiC_f/SiC$ composite.

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

Numerical analysis of FEBEX at Grimsel Test Site in Switzerland (스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구)

  • Lee, Changsoo;Lee, Jaewon;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.359-381
    • /
    • 2020
  • Within the framework of DECOVALEX-2019 Task D, full-scale engineered barriers experiment (FEBEX) at Grimsel Test Site was numerically simulated to investigate an applicability of implemented Barcelona basic model (BBM) into TOUGH2-MP/FLAC3D simulator, which was developed for the prediction of the coupled thermo-hydro-mechanical behavior of bentonite buffer. And the calculated heater power, temperature, relative humidity, total stress, saturation, water content and dry density were compared with in situ data monitored in the various sections. In general, the calculated heater power and temperature provided a fairly good agreement with experimental observations, however, the difference between power of heater #1 and that of heater #2 could not captured in the numerical analysis. It is necessary to consider lamprophyre with low thermal conductivity around heater #1 and non-simplified installation progresses of bentonite blocks in the tunnel for better modeling results. The evolutions and distributions of relative humidity were well reproduced, but hydraulic model needs to be modified because the re-saturation process was relatively fast near the heaters. In case of stress evolutions due to the thermal and hydraulic expansions, the computed stress was in good agreement with the data. But, the stress is slightly higher than the measured in situ data at the early stage of the operation, because gap between rock mass and bentonite blocks have not been considered in the numerical simulations. The calculated distribution of saturation, water content, and dry density along the radial distance showed good agreement with the observations after the first and final dismantling. The calculated dry density near the center of the FEBEX tunnel and heaters were overestimated compared with the observations. As a result, the saturation and water content were underestimated with the measurements. Therefore, numerical model of permeability is needed to modify for the production of better numerical results. It will be possible to produce the better analysis results and more realistically predict the coupled THM behavior in the bentonite blocks by performing the additional studies and modifying the numerical model based on the results of this study.