DOI QR코드

DOI QR Code

Repetitive Electroacupuncture Alleviate Neuropathic Pain in Association with Suppressing Activation of Spinal Glial Cells

반복적인 전침 처치의 척수 교세포 활성 억제를 통한 신경병증성 통증 억제 효과

  • Lee, Heun Joo (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University) ;
  • Jeong, Bo Eun (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University) ;
  • Song, Da Eun (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University) ;
  • Park, Min Young (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University) ;
  • Koo, Sungtae (Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University)
  • 이흔주 (부산대학교 한의학전문대학원 경락구조의학부) ;
  • 정보은 (부산대학교 한의학전문대학원 경락구조의학부) ;
  • 송다은 (부산대학교 한의학전문대학원 경락구조의학부) ;
  • 박민영 (부산대학교 한의학전문대학원 경락구조의학부) ;
  • 구성태 (부산대학교 한의학전문대학원 경락구조의학부)
  • Received : 2013.03.04
  • Accepted : 2013.03.19
  • Published : 2013.03.27

Abstract

Objectives : Effects of repetitive electroacupuncture(EA) on the pain behavior and activation of spinal glial cells were examined in the rat model of neuropathic pain. Methods : Twenty one adult male Sprague-Dawley rats were randomly assigned into 3 groups(control group, SP6 group, ST36+GB34 group). Neuropathic pain was induced by tight ligation of L5 spinal nerve. Mechanical and thermal hypersensitivity of hind paw were tested. Immunohistochemistry was performed in spinal cord L5/6 of all groups. EA was treated once in a day from the $5^{th}$ day after surgery. Results : EA treatments applied to ST36 and GB34 reduced significantly both of mechanical and thermal hypersensitivity after 3 times of treatment throughout the experiments. In the SP6 group, the analgesic effect was also shown after 7 times of treatment. Immunohistochemistry demonstrated inhibition of microglia and astrocyte activation in the spinal cord L5/6 dorsal horn in the ST36+GB34 group. Conclusions : The present results suggest that repetitive EA exert strong analgesic effect on neuropathic pain. These analgesic effects in neuropathic pain are associated with suppressing the activation of microglia and astrocyte.

목적 : 신경병증성 통증 쥐 모델에서 통증 행동과 척수 교세포의 활성화에 대한 반복적 전침의 영향을 실험하였다. 방법 : 21마리 Sprague-Dawley 성체 수컷 쥐를 무작위적으로 대조군, SP6 군, ST36+GB34 군으로 나누었다. 신경병증성 통증은 L5 척수신경을 단단하게 묶는 것으로 유도하였다. 신경병증성 통증이 유도된 뒷발에 기계적 및 열적 민감도를 조사하였다. 모든 군의 L5/6 척수에서 면역조직화학염색법을 수행하였다. 수술 이후 5일째부터 하루에 한번씩 전침을 시행하였다. 결과 : 족삼리(ST36)와 양릉천(GB34)에 적용된 전침은 3번의 처치 이후 실험기간 내내 기계적 및 열적 민감도를 모두 감소시켰다. 삼음교(SP6) 군에서는 진통 효과가 7번의 처치 이후 감소됨을 보였다. 면역조직화학염색법은 ST36+GB34 군에서 L5/6 척수 후각에서 교세포와 성상세포의 활성화가 억제됨을 보였다. 결론 : 이 결과는 반복적인 전침은 신경병증성 통증에 강한 진통 효과를 발휘 하는 것을 시사한다. 신경병증성 통증에서 이 진통 효과는 교세포와 성상세포의 활성화를 억제하는 것과 관련이 있다.

Keywords

References

  1. Foley KM. Opioids and chronic neuropathic pain. N Engl J Med. 2003 ; 348 : 1279-81. https://doi.org/10.1056/NEJMe030014
  2. Verma S, Estanislao L, Simpson D. HIV-associated neuropathic pain: epidemiology, pathophysiology and management. CNS Drugs. 2005 ; 19 : 325-34. https://doi.org/10.2165/00023210-200519040-00005
  3. Werhagen L, Budh CN, Hultling C, Molander C. Neuropathic pain after traumatic spinal cord injury--relations to gender, spinal level, completeness, and age at the time of injury. Spinal Cord. 2004 ; 42 : 665-73. https://doi.org/10.1038/sj.sc.3101641
  4. Tawfik VL, Nutile-McMenemy N, Lacroix-Fralish ML, Deleo JA. Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury. Brain Behav Immun. 2007 ; 21 : 238-46. https://doi.org/10.1016/j.bbi.2006.07.001
  5. Kim JH, Min BI, Na HS, Park DS. Relieving effects of electroacupuncture on mechanical allodynia in neuropathic pain model of inferior caudal trunk injury in rat: mediation by spinal opioid receptors. Brain Res. 2004 ; 998 : 230-6. https://doi.org/10.1016/j.brainres.2003.11.045
  6. Butera JA. Current and emerging targets to treat neuropathic pain. J Med Chem. 2007; 50: 2543-6. https://doi.org/10.1021/jm061015w
  7. Sinatra R. Role of COX-2 inhibitors in the evolution of acute pain management. J Pain Symptom Manage. 2002 ; 24 : S18-27. https://doi.org/10.1016/S0885-3924(02)00410-4
  8. Bridges D, Thompson SW, Rice AS. Mechanisms of neuropathic pain. Br J Anaesth. 2001 ; 87 : 12-26. https://doi.org/10.1093/bja/87.1.12
  9. Filshie J. The non-drug treatment of neuralgic and neuropathic pain of malignancy. Cancer Surv. 1988 ; 7 : 161-93.
  10. Goodnick PJ, Breakstone K, Wen XL, Kumar A. Acupuncture and neuropathy. Am J Psychiatry. 2000 ; 157 : 1342-3. https://doi.org/10.1176/appi.ajp.157.8.1342
  11. Omana I, Olvera V, Santos P, Calderon JL. Naloxone prevents reduction of pain responses evoked by acupuncture in neuropathic rats. Proc West Pharmacol Soc. 1994 ; 37 : 135-6.
  12. Wang SM, Kain ZN, White P. Acupuncture analgesia: I. The scientific basis. Anesth Analg. 2008 ; 106 : 602-10. https://doi.org/10.1213/01.ane.0000277493.42335.7b
  13. Dong ZQ, Ma F, Xie H, Wang YQ, Wu GC. Down-regulation of GFRalpha-1 expression by antisense oligodeoxynucleotide attenuates electroacupuncture analgesia on heat hyperalgesia in a rat model of neuropathic pain. Brain Res Bull. 2006 ; 69 : 30-6. https://doi.org/10.1016/j.brainresbull.2005.08.027
  14. Dai Y, Kondo E, Fukuoka T, Tokunaga A, Miki K, Noguchi K. The effect of electroacupuncture on pain behaviors and noxious stimulus-evoked Fos expression in a rat model of neuropathic pain. J Pain. 2001 ; 2 : 151-9. https://doi.org/10.1054/jpai.2001.19964
  15. Hwang BG, Min BI, Kim JH, Na HS, Park DS. Effects of electroacupuncture on the mechanical allodynia in the rat model of neuropathic pain. Neurosci Lett. 2002 ; 320 : 49-52. https://doi.org/10.1016/S0304-3940(02)00027-7
  16. Huang C, Li HT, Shi YS, Han JS, Wan Y. Ketamine potentiates the effect of electroacupuncture on mechanical allodynia in a rat model of neuropathic pain. Neurosci Lett. 2004 ; 368 : 327-31. https://doi.org/10.1016/j.neulet.2004.07.073
  17. Takeshige C, Sato T, Mera T, Hisamitsu T, Fang J. Descending pain inhibitory system involved in acupuncture analgesia. Brain Res Bull. 1992 ; 29 : 617-34. https://doi.org/10.1016/0361-9230(92)90131-G
  18. Li A, Wang Y, Xin J, Lao L, Ren K, Berman BM, et al. Electroacupuncture suppresses hyperalgesia and spinal Fos expression by activating the descending inhibitory system. Brain Res. 2007 ; 1186 : 171-9. https://doi.org/10.1016/j.brainres.2007.10.022
  19. Eisenach JC. Muscarinic-mediated analgesia. Life Sci. 1999 ; 64 : 549-54. https://doi.org/10.1016/S0024-3205(98)00600-6
  20. Millan MJ. Descending control of pain. Prog Neurobiol. 2002 ; 66 : 355-474. https://doi.org/10.1016/S0301-0082(02)00009-6
  21. Gao X, Xin BM, Zhu CB, Wu GC, Xu SF. Effect of intrathecal injection of dopamine receptor agonists/antagonists on pain and acupuncture analgesia in rats. Sheng Li Xue Bao. 1998 ; 50 : 43-8.
  22. Miller G. Neuroscience. The dark side of glia. Science. 2005 ; 308 : 778-81. https://doi.org/10.1126/science.308.5723.778
  23. Markiewicz I, Lukomska B. The role of astrocytes in the physiology and pathology of the central nervous system. Acta Neurobiol Exp(Wars). 2006 ; 66 : 343-58.
  24. Allen NJ, Barres BA. Neuroscience: Glia-more than just brain glue. Nature. 2009 ; 457 : 675-7. https://doi.org/10.1038/457675a
  25. Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc. 2005 ; 80 : 1326-38. https://doi.org/10.4065/80.10.1326
  26. Cao H, Zhang YQ. Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev. 2008 ; 32 : 972-83. https://doi.org/10.1016/j.neubiorev.2008.03.009
  27. Lee S, Zhao YQ, Ribeiro-da-Silva A, Zhang J. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation. Mol Pain. 2010 ; 6 : 79. https://doi.org/10.1186/1744-8069-6-79
  28. Zhuang ZY, Wen YR, Zhang DR, Borsello T, Bonny C, Strichartz GR, et al. A peptide c-Jun N-terminal kinase(JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci. 2006 ; 26 : 3551-60. https://doi.org/10.1523/JNEUROSCI.5290-05.2006
  29. Watkins LR, Maier SF. Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002 ; 82 : 981-1011. https://doi.org/10.1152/physrev.00011.2002
  30. Suter MR, Wen YR, Decosterd I, Ji RR. Do glial cells control pain? Neuron Glia Biol. 2007 ; 3 : 255-68.
  31. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007 ; 10 : 1361-8. https://doi.org/10.1038/nn1992
  32. Gim GT, Lee JH, Park E, Sung YH, Kim CJ, Hwang WW, et al. Electroacupuncture attenuates mechanical and warm allodynia through suppression of spinal glial activation in a rat model of neuropathic pain. Brain Res Bull. 2011 ; 86 : 403-11. https://doi.org/10.1016/j.brainresbull.2011.09.010
  33. World Health Organization. Standard acupuncture nomenclature. Manila: World Health Organization, Regional Office for the Western Pacific. 1993.
  34. Koo ST, Kim SK, Kim EH, Kim JH, Youn DH, Lee BH, et al. Acupuncture point locations for experimental animal studies in rats and mice. Korean Journal of Acupuncture. 2010 ; 27 : 75-86.
  35. Cidral-Filho FJ, da Silva MD, More AO, Cordova MM, Werner MF, Santos AR. Manual acupuncture inhibits mechanical hypersensitivity induced by spinal nerve ligation in rats. Neuroscience. 2011 ; 193 : 370-6. https://doi.org/10.1016/j.neuroscience.2011.07.076
  36. Romero-Sandoval A, Chai N, Nutile-McMenemy N, Deleo JA. A comparison of spinal Iba1 and GFAP expression in rodent models of acute and chronic pain. Brain Res. 2008 ; 1219 : 116-26. https://doi.org/10.1016/j.brainres.2008.05.004
  37. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996 ; 19 : 312-8. https://doi.org/10.1016/0166-2236(96)10049-7
  38. Liu FY, Sun YN, Wang FT, Li Q, Su L, Zhao ZF, et al. Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res. 2012 ; 1427 : 65-77. https://doi.org/10.1016/j.brainres.2011.10.016
  39. Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003 ; 2 : 973-85. https://doi.org/10.1038/nrd1251
  40. Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci. 2001 ; 24 : 450-5. https://doi.org/10.1016/S0166-2236(00)01854-3
  41. DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain. Pin. 2001 ; 90 : 1-6.
  42. Mika J, Osikowicz M, Rojewska E, Korostynski M, Wawrzczak- Bargiela A, Przewlocki R, et al. Differential activation of spinal microglial and astroglial cells in a mouse model of peripheral neuropathic pain. Eur J Pharmacol. 2009 ; 623 : 65-72. https://doi.org/10.1016/j.ejphar.2009.09.030
  43. Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005 ; 114 : 149-59. https://doi.org/10.1016/j.pain.2004.12.022

Cited by

  1. Electroacupuncture Enhances the Antiallodynic and Antihyperalgesic Effects of Milnacipran in Neuropathic Rats vol.122, pp.5, 2016, https://doi.org/10.1213/ANE.0000000000001212