References
- Agharazi, A., Martin, C.D., and Tannant, D.D. (2012), "A Three Dimensional Equivalent Continuum Constitutive Model for Jointed Rock Masses Containing up to Three Random Joint Sets", Geomech. Geoeng.: An Int. J., Vol.7, No.4, pp.227-238. https://doi.org/10.1080/17486025.2012.714476
- Amadei, B. and Goodman, R.E. (1981), "A 3-D Constitutive Relation for Fractured Rock Masses", Proceedings of the international symposium on mechanical behaviour of structured media, pp.249-268.
- Bagheri, M.A. and Settari, A. (2006), "Effects of Fractures on Reservoir Deformation and Flow Modeling", Can. Geotech. J., 43, pp.574-586. https://doi.org/10.1139/t06-024
- Barton, N., Bandis, S., and Shinas, C. (2001), "Engineering Criterion of Rock Mass Strength", Proceedings of the fourth Hellenic conference on geotechnical and geo-environmental engineering, 1, pp.115-122.
- Brideau, M.A., Chauvin, S., Andrieux, P., and Stead, D. (2012), "Influence of 3D Statistical Discontinuity Variability on Slope Stability Conditions", Landslides and engineered slopes: Protecting Society through improved understanding, pp.587-593.
- Cai, M. and Horii, H. (1992), "A Constitutive Model of Highly Jointed Rock Masses", Mech. Mater., Vol.13, No.3, pp.217-246. https://doi.org/10.1016/0167-6636(92)90004-W
- Desai, C.S., Zamman, M.M., Lightner, J.G., and Siriwardane, H.J. (1984), "Thin Layer Element for Interfaces and Joints", Int J Numer Anal Methods Geomech., 8, pp.19-43. https://doi.org/10.1002/nag.1610080103
- Duncan, C.W. and Christopher, W.M. (2010), Rock Slope Engineering: Civil and Mining, 4th Edition, p.388.
- Gan, Q. and Elsworth, D. (2016), "A Continuum Model for Coupled Stress and Fluid Flow in Discrete Fracture Networks", Geomech Geophys Geo-Energy Geo-Resour, Vol.2, No.1, pp.43-61. https://doi.org/10.1007/s40948-015-0020-0
- Goodman, R. and Shi, G. (1985), Block theory and its application to rock engineering, Prentice-Hall International, p.338.
- Goodman, R.E., Taylor, R.L., and Brekke, T.L. (1968), "A Model for the Mechanics of Jointed Rock", J. Soil Mech. Div. ASCE., 94(SM3), pp.637-659. https://doi.org/10.1061/JSFEAQ.0001133
- Grujovic, N., Divac, D., Zivkovic, M., Slavkovic, R., Milivojevic, N., Milivojevic, V., and Rakic, D. (2013), "An Inelastic Stress Integration Algorithm for a Rock Mass Containing Sets of Discontinuities", Acta Geotech, 8, pp.265-278. https://doi.org/10.1007/s11440-012-0194-3
- Hoek, E. and Londe, P. (1974), "The design of rock slopes and foundations", General Report on Theme III. Proc.
- Hoek, E. and Bray, J.D. (1981), Rock Slope Engineering, 3rd Edition, CRC Press, p.368.
- Huang, T.H., Chang, C.S., and Yang, Z.Y. (1995), "Elastic Moduli for Fractured Rock Mass", Rock Mechanics and Rock Engineering, Vol.28, No.3, pp.135-144. https://doi.org/10.1007/BF01020148
- Hudson, J.A. and Harrison, J.P. (2000), Engineering rock mechanics: An introduction to the principles, Elsevier, p.444.
- Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W. (2007), Fundamentals of Rock Mechanics, 4th edition, Blackwell, p.475.
- Lee, S.H., Lough, M.F., and Jensen, C.L. (2001), "Hierarchical Modeling of Flow in Naturally Fractured Formations with Multiple Length Scales", Water Resources Research, 37, pp.443-455. https://doi.org/10.1029/2000WR900340
- Lei, Q. (2016), Characterisation and modelling of natural fracture networks: Geometry, geomechanics and fluid flow, Imperial College, PhD Thesis.
- Lisle, R.J. (2004), "Calculation of the Daylight Envelope for Plane Failure of Rock Slopes", Geotechnique, Vol.54, No.4, pp.279-280. https://doi.org/10.1680/geot.2004.54.4.279
- Liu, X., Han, G., Wang, E., Wang, S., and Nawnit, K. (2018), "Multiscale Hierarchical Analysis of Rock Mass and Prediction of its Mechanical and Hydraulic Properties", Journal of Rock Mechanics and Geotechnical Engineering, Vol.10, No.4, pp.694-702. https://doi.org/10.1016/j.jrmge.2018.04.003
- Maghous, S., Bernaud, D., Fre'ard, J., and Garnier, D. (2008), "Elastoplastic behaviour of Jointed Rock Masses as Homogenized Media and Finite Element Analysis", International Journal of Rock Mechanics and Mining Sciences, 45, pp.1273-1286. https://doi.org/10.1016/j.ijrmms.2008.01.008
- Oda, M. (1986), "An Equivalent Continuum Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses", Water Resour Res., Vol.22, No.13, pp.1845-1856. https://doi.org/10.1029/WR022i013p01845
- Pluimers, S.B. (2015), Hierarchical fracture modeling approach, Delft University of Technology, Ph.D Thesis.
- Rafeh, F., Mroueh, H., and Burlon, S. (2015), "Equivalent continuum model accounting for anisotropy in chalk by means of embedded joint sets", Computer Methods and Recent Advances in Geomechanics, Oka, Murakami, Uzuoka & Kimoto (Eds.) Taylor & Francis Group.
- Samadhiya, N.K., Viladkar, M.N., and Al-Obaydi, M.A. (2008), "Numerical Implementation of Anisotropic Continuum Model for Rock Masses", International Journal of Geomechanics, ASCE, Vol.8, No.2, pp.157-161. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(157)
- Shin, H. and Santamarina, J. (2019), "An Implicit Joint-continuum Model for the Hydro-mechanical Analysis of Fractured Rock Masses", International Journal of Rock Mechanics and Mining Sciences, 119, pp.140-148. https://doi.org/10.1016/j.ijrmms.2019.04.006
- Sitharam, T.G., Sridevi, J., and Shimizu, N. (2001), "Practical Equivalent Continuum Characterization of Jointed Rock Masses", Int J Rock Mech Min Sci, 38, pp.437-448. https://doi.org/10.1016/S1365-1609(01)00010-7
- Son, M., Lee, W.K., and Hwang, Y.C. (2014), "Estimation of Elastic Modulus of Jointed Rock Mass under Tunnel Excavation Loading", Journal of the Korean Geotechnical Society, Vol.30, No.7, pp.17-26. https://doi.org/10.7843/KGS.2014.30.7.17
- Stead, D., Eberhardt, E., and Coggan, J. (2006), "Development in the Characterization of Complex Rock Slope Deformation and Failure Using Numerical Modeling Techniques", Engineering Geology, 83, pp.217-235. https://doi.org/10.1016/j.enggeo.2005.06.033
- Twiss, R.J. and Moores, E.M. (2007), Structural Geology, second ed. W.H. Freeman and Company, p.736.
- Wang, T.T. and Huang, T.H. (2009), "A Constitutive Model for the Deformation of a Rock Mass Containing Sets of Ubiquitous Joints", Int. J. Rock Mech. Min. Sci., Vol.46, No.3, pp.521-530. https://doi.org/10.1016/j.ijrmms.2008.09.011