• Title/Summary/Keyword: mechanical alloying process

Search Result 223, Processing Time 0.029 seconds

Synthesis of Cathode Material-Nickel Sulfides by Mechanical Alloying for Sodium Batteries

  • Liu, Xiaojing;Ahn, Hyo-Jun;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • In this study, fine cathode materials $Ni_3S_2$ and $NiS_2$ were synthesized using the simple, convenient process of mechanical alloying (MA). In order to improve the cell properties, wet milling processes were conducted using low-energy ball milling to decrease the mean particle size of both materials. The cells of Na/$Ni_3S_2$ and Na/$NiS_2$ show a high initial discharge capacity of 425 mAh/g and 577 mAh/g respectively using wet milled powder particles, which is much larger than commercial ones, providing some potential as new cathode materials for rechargeable sodium-ion batteries.

The Evaluation of Thermal Properties for W-Cu Composite Sintered from Mechanically Alloyed Powders (기계적 합금화한 W-Cu 복합분말 소결체의 열물성 평가)

  • 오낭렴;김대건;석명진;김영환;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.7 no.3
    • /
    • pp.154-160
    • /
    • 2000
  • In order to enhance sinterability of W-Cu composites used for heat sink materials, mechanical alloying process where both homogeneous mixing of component powders and fine dispersion of minor phase can be easily attained was employed. Nanostructured W-Cu powders prepared by mechanical alloying showed W grain size ranged of 20-50 nm and were able to be efficiently sintered owing to the fine particle size as well as uniform distribution of Cu phase. The thermal properties such as electrical resistivity, coefficient of thermal expansion and thermal conductivity were evaluated as functions of temperature and Cu content. It was found that the coefficient of thermal expansion could be controlled by changing Cu content. The measured electrical resistivities and thermal diffusivities were also varied with Cu content. The thermal conductivities calculated from the values of resistivities and diffusivities showed similar tendency as a function of temperatures. However, this is in contradiction with thermal conductivities of pure W and Cu which decrease with increasing temperature.

  • PDF

Extrusion of Spur Gear Using High-Energy Ball Milled Al-78Zn Powder (고에너지 볼밀법으로 제조된 Al-78Zn Powder를 이용한 스퍼기어의 압출)

  • Kim, Jin-Woo;Lee, Sang-Jin;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.440-446
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 2.25mm using extrusion process of a mechanically alloyed Al-78wt%Zn powder. The mechanical alloying of the powder particles were performed for ball milled times of 4h, 8h, 16 and 32h by the planetary ball milling. The mechanical properties of these alloyed powders, which were compacted and sintered-cylindrical preforms, were estimated using compression test. The results showed that the alloyed powder with average particle size of $10{\mu}m$ milled for 32h has the highest compressive(fractured) strength(288MPa). Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. Extrusion temperature of $300^{\circ}C$ provided the spur gear with the highest relative density and Vickers hardness and without any surface defects.

Synthesis and magnetic properties of copper and Ba-ferrite ferromagnetic composites by mechanical alloying (기계적합금화법에 의한 Cu-Ba ferrite 강자성 복합재료의 합성 및 자기적 성질)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • Synthesis of ferromagnetic composite materials for the $Cu-BaFe_{12}O_{19}$ system by mechanical alloying (MA) has been investigated at room temperature. A mixture of copper and barium ferrite with a weight ratio of $Cu:BaFe_{12}O_{19}=4:1$, 3 : 2, 2 : 3 and 1 : 4 was used. It is found that $Cu-BaFe_{12}O_{19}$ composite powders in which $BaFe_{12}O_{19}$ is dispersed in copper matrix are successfully produced by mechanical alloying of $BaFe_{12}O_{19}$ with Cu for 80 min. in all composition. The change in X-ray diffraction patterns and magnetic properties reflects the details for the formation of ferromagnetic metal matrix composite of pure Cu and $BaFe_{12}O_{19}$ during mechanical alloying. Magnetization of $Cu-BaFe_{12}O_{19}$ composite powders gradually increases with increasing the amounts of barium ferrite, whereas coercive force of MA powders gradually decreases due to the refinement of barium ferrite powders with ball milling. However, it can be seen that the coercivity of $Cu-BaFe_{12}O_{19}$ MA composite powders with a weight ratio of $Cu:BaFe_{12}O_{19}=4:1$ and 3 : 2 ball-milled for 80 min. is still high value of 1400 Oe and 1450 Oe, respectively suggesting that the refinement of barium ferrite powders during ball milling process tend to be suppressed due to the ductile copper.

Fabrication of Graphite-Ni Composite Powders and Effect of Thermal Spray Coating Parameters on Mechanical and Microstructural Properties (Graphite-Ni계 분말의 제조 및 용사 코팅 특성에 미치는 공정변수의 영향)

  • Kwon Joon-Chul;Cho Mun-Kwan;Kim Il-Ho;Hong Tae-Whan;Kweon Soon-Yong;Lee Young-Geun;Park Soon-Wook;Ur Soon-Chul
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.136-145
    • /
    • 2005
  • Graphite-Ni composite powders were synthesized by mechanical alloying(MA) and spray drying(SD). Fabricated powders as well as commercial graphite-Ni powders were thermally sprayed on mild steel substrates using high velocity oxygen fuel (HVOF) thermal spray process and flame thermal spray process. The effects of several process parameters on related properties in thermally sprayed coatings have been investigated and correlated with microstructures in this study. The results indicated that the desired properties can be obtained when commercial powders were applied using HVOF process, while coating properties in case of MA powder application were inferior to those in HVOF process in so far. However, it is suggested that property enhancement can be obtained if the fraction of hexagonal graphite phase can be increased in mechanically alloyed powders.

Microstructural Characteristics of Ni/YSZ Cermet for High Temperature Electrolysis by Mechanical Alloying (기계적 합금화법으로 제조된 고온 수전해용 Ni/YSZ 전극의 미세구조 특성)

  • Park Keun-Man;Chae Ui-Seok;Hong Hyun Seon;Choo Soo-Tae
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.743-748
    • /
    • 2004
  • Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by the direct ball milling of Ni and YSZ powder. The ball milling was carried out in dry process and in ethanol with varying milling time. While the dry-milling decreased the average size from 65 to $80{\mu}m$, the wet-milling decreased the average size down to $10{\mu}m$. In addition, very fine particles less than $0.1{\mu}m$ were observed in the wet-milling condition. The subsequent process of cold-pressing and sintering at $900^{\circ}C$ for 2 h did not affect the particle size of dry-milled powder. The electrical conductivity of the dry-milled Ni/YSZ cermet showed the value of $5{\times}10^{2}\;S/cm$ and this value was increased to $1.4{\times}10^{4}\;S/cm$ after the sintering at $900^{\circ}C$ for 2 h.

Thermoelectric properties of FeVSb1-xTex half-heusler alloys fabricated via mechanical alloying process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.582-588
    • /
    • 2019
  • FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.

Effect of Alloying Elements on Particulate Dispersion Behavior and Mechanical Properties in TiC Particulate Reinforced Magnesium Matrix Composites (TiC 입자강화 Mg 복합재료에 있어서 입자 분산거동 및 기계적 성질에 미치는 합금원소의 영향)

  • Lim, Suk-Won;Choh, Takao;Park, Yong-Jin
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.240-247
    • /
    • 1994
  • TiC particulate reinforced magnesium matrix composites were fabricated by melt stirring method. The effect of alloying elements on TiC particulate dispersion into molten magnesium and mechanical properties were investigated. The incorporation time is defined as the time required for dispersion of solid particles into molten metal. The incorporation time of TiC particles into molten pure magnesium was remarkably shorter and the particulated dispersion was more uniform than that of pure aluminum which was reported previously. The incorporation time was, prolonged by the addition of Al, Bi, Ca, Ce, Pb, Sn or Zn. The tensile strength increased and elongation decreased by the addition of Cu or Sn into the matrices and composites. Although, the tensile strength of the matrices and composites increased by alloying with Ca or Ce, the maximum elongation was observed at a content of about 1% for the matrices. By alloying with Zn, the tensile strength increased for the matrices and composites, but the elongation of the matrices increased. The pure magnesium and its alloy matrix composites reinforced with 20vol% TiC have the tensile strength of about 400MPa. This value is compared with the tensile strength of SiC whisker reinforced magnesium matrix composites fabricated by liquid infiltration method at the same volume fraction. There fore, the melt strirring method which has the advantages of simple process is considered to be efficient in fabricating magnesium matrix composites.

  • PDF