DOI QR코드

DOI QR Code

Thermoelectric properties of FeVSb1-xTex half-heusler alloys fabricated via mechanical alloying process

  • Hasan, Rahidul (Department of Materials Science and Engineering/ReSEM, Korea National University of Transportation) ;
  • Ur, Soon-Chul (Department of Materials Science and Engineering/ReSEM, Korea National University of Transportation)
  • Received : 2019.03.08
  • Accepted : 2019.09.26
  • Published : 2019.12.01

Abstract

FeVSb1-xTex (0.02 ≤ x ≤ 0.10) half-Heusler alloys were fabricated by mechanical alloying process and subsequent vacuum hot pressing. Near single half-Heusler phases are formed in vacuum hot pressed samples but a second phase of FeSb2 couldn't be avoided. After doping, the lattice thermal conductivity in the system was shown to decrease with increasing Te concentration and with increasing temperature. The lowest thermal conductivity was achieved for FeVSb0.94Te0.06 sample at about 657 K. This considerable reduction of thermal conductivities is attributed to the increased phonon scattering enhanced by defect structure, which is formed by doping of Te at Sb site. The phonon scattering might also increase at grain boundaries due to the formation of fine grain structure. The Seebeck coefficient increased considerably as well, consequently optimizing the thermoelectric figure of merit to a peak value of ~0.24 for FeVSb0.94Te0.06. Thermoelectric properties of various Te concentrations were investigated in the temperature range of around 300~973 K.

Keywords

References

  1. J.B. Neaton, Nature Nanotechnology. 9 (2014) 876-877. https://doi.org/10.1038/nnano.2014.256
  2. X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, Renewable and Sustainable Energy Reviews. 32 (2014) 486-503. https://doi.org/10.1016/j.rser.2013.12.053
  3. G.J. Snyder and E.S. Toberer, Nature Materials. 7 (2008) 105-114. https://doi.org/10.1038/nmat2090
  4. K. Delime-Codrin, T. Yamada, A. Yamamoto, R. Sobota, M. Matsunami, and T. Takeuchi, Jpn. J. Appl. Phys. 56 (2017) 111202. https://doi.org/10.7567/JJAP.56.111202
  5. C. Fu, H. Xie, T. Zhu, J. Xie, and B.X. Zhao, J. Appl. Phys. 112 (2012) 124915. https://doi.org/10.1063/1.4772605
  6. M. Zou, J.F. Li, T. Kita, Sol. Stat. Chem. 198 (2013) 125-130 https://doi.org/10.1016/j.jssc.2012.09.043
  7. S. Sakurada and N. Shutoh, Appl. Phys. Lett. 86 (2005) 082105. https://doi.org/10.1063/1.1868063
  8. S. Populoh, M. Aguirre, O. Brunko, K. Galazka, Y. Lu, andA. Weidenkaff, Materials, 6 (2013) 1326-1332. https://doi.org/10.3390/ma6041326
  9. M. Schwalland B. Balke, Phys. Chem. Chem. Phys. 15 (2013) 1868-1872. https://doi.org/10.1039/C2CP43946H
  10. X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani, H. Wang, D. Wang, G. Chen, and Z. Ren, Energy Environ. Sci., 5 (2012) 7543-7548. https://doi.org/10.1039/c2ee21554c
  11. E. Rausch, B. Balke, S. Ouardi, andC. Felser, Phys. Chem. Chem. Phys. 16 (2014) 25258-25262. https://doi.org/10.1039/C4CP02561J
  12. P. Qiu, X. Huang, X. Chen, andL. Chen, J. Appl. Phys. 106 (2009) 103703. https://doi.org/10.1063/1.3238363
  13. Z. Aksamijaand I. Knezevic, Phys. Rev. B. 88 (2013) 155318. https://doi.org/10.1103/PhysRevB.88.155318
  14. K. Kothariand M. Maldovan, Nanoscale and Microscale Thermophysical Engineering. 22 (2018) 1-15. https://doi.org/10.1080/15567265.2017.1391905
  15. R. Stern, B. Dongre, andG.K.H. Madsen, Nanotechnology. 27 (2016) 334002. https://doi.org/10.1088/0957-4484/27/33/334002
  16. S.-C. Ur, H. Choo, D. B. Lee, and P. Nash, Metals and Materials, 6 (2000) 435. https://doi.org/10.1007/BF03028132
  17. E.P. DeGarmo, J.T. Black, and R.A. Kohser, Solution Manuals to Accompany-Materials and Process in Manufacturing (9th Ed.), John Wiley and Sons Ltd, New York (2003).
  18. M. Blair and T.L. Stevens, Steel Castings Handbook, ASM International, Ohio (1995).
  19. D.M. Rowe and V.S. Shukla, J. Appl. Phys. 52 (1981) 7421. https://doi.org/10.1063/1.328733
  20. W. Qin, T. Nagase, Y. Umakoshi, andJ.A. Szpunar, J. Phys.: Condens. Matter. 19 (2007) 236217. https://doi.org/10.1088/0953-8984/19/23/236217
  21. A.R. Dentonand N.W. Ashcroft, Phys. Rev. A. 43 (1991) 3161-3164. https://doi.org/10.1103/PhysRevA.43.3161
  22. E. Atkins, Phys. Bull. 29 (1978) 572. https://doi.org/10.1088/0031-9112/29/12/034
  23. T. Sekimoto, K. Kurosaki, H. Muta, andS. Yamanaka, 24th International Conference on Thermoelectrics (ICT 2005).
  24. G. S. Nolas, J. Sharp, andJ. Goldsmid, Thermoelectrics: Basic Principles and New Materials Development, Springer, USA, 2001.
  25. P. Maji, N.J. Takas, D.K. Misra, H. Gabrisch, K. Stokes, and P.F.P. Poudeu, Solid State Chem. 183 (2010) 1120-1126. https://doi.org/10.1016/j.jssc.2010.03.023
  26. C. Uher, J. Yang, S. Hu, D.T. Morelli, and G.P. Meisner, Phys. Rev. B. 59 (1999) 8615-8621. https://doi.org/10.1103/PhysRevB.59.8615
  27. J. Cui, G. Cai, and W. Ren, RSC Adv. 8 (2018) 21637-21643. https://doi.org/10.1039/C8RA03704C
  28. R. Hasan and S.-C. Ur, Trans. Electr. Electron. Mater. 19 (2018) 106-111. https://doi.org/10.1007/s42341-018-0024-x