DOI QR코드

DOI QR Code

Microstructural Characteristics of Ni/YSZ Cermet for High Temperature Electrolysis by Mechanical Alloying

기계적 합금화법으로 제조된 고온 수전해용 Ni/YSZ 전극의 미세구조 특성

  • Park Keun-Man (Plant Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Chae Ui-Seok (Plant Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Hong Hyun Seon (Plant Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Choo Soo-Tae (Plant Engineering Center, Institute for Advanced Engineering (IAE))
  • 박근만 (고등기술연구원 플랜트엔지니어링센터) ;
  • 채의석 (고등기술연구원 플랜트엔지니어링센터) ;
  • 홍현선 (고등기술연구원 플랜트엔지니어링센터) ;
  • 추수태 (고등기술연구원 플랜트엔지니어링센터)
  • Published : 2004.10.01

Abstract

Modified Ni/YSZ cermets for high temperature electrolysis were synthesized by the direct ball milling of Ni and YSZ powder. The ball milling was carried out in dry process and in ethanol with varying milling time. While the dry-milling decreased the average size from 65 to $80{\mu}m$, the wet-milling decreased the average size down to $10{\mu}m$. In addition, very fine particles less than $0.1{\mu}m$ were observed in the wet-milling condition. The subsequent process of cold-pressing and sintering at $900^{\circ}C$ for 2 h did not affect the particle size of dry-milled powder. The electrical conductivity of the dry-milled Ni/YSZ cermet showed the value of $5{\times}10^{2}\;S/cm$ and this value was increased to $1.4{\times}10^{4}\;S/cm$ after the sintering at $900^{\circ}C$ for 2 h.

Keywords

References

  1. H. S. Sparcil and C. S. Tedmon, Jr, J. Electrochem. Soc., 116, 1618 (1969) https://doi.org/10.1149/1.2411642
  2. W. Donitz and E. Erdle, Int. J. Hydrogen Energy, 10, 801 (1985) https://doi.org/10.1016/0360-3199(85)90181-8
  3. W. Donitz, G. Dietrich, E. Erdle and R. Streicher, Int. J. Hydrogen Energy, 13, 283 (1988) https://doi.org/10.1016/0360-3199(88)90052-3
  4. H. S. Hong, S.-T. Choo and Y. Yun, Trans. of the Korea Hydrogen Energy Society, 14(4), 335 (2003)
  5. W. Donitz, E. Erdle and R. Streicher, Electrochemical Hydrogen Technology, Amsterdam, Elsevier (1990)
  6. F. J. Salzano, G. Skaperdas and A. Mezzina, Int. J. Hydrogen Energy, 10, 801 (1985) https://doi.org/10.1016/0360-3199(85)90168-5
  7. T. Fukui, S. Ohara, M. Naito and K. Nogi, Power Technology, 132, 52 (2003) https://doi.org/10.1016/S0032-5910(03)00044-5
  8. H. Moon, H-W. Lee, J-H. Lee and K-H. Yoon, J. Kor. Ceram. Soc., 37(12), 1140 (2000)
  9. B. G. Pound, D. J. M. Bevan and J. O. M. Bockris, Int. J. Hydrogen Energy, 6, 473 (1981) https://doi.org/10.1016/0360-3199(81)90079-3
  10. H. Arashi, H. Naito and H. Miura, Int. J. Hydrogen Energy, 16, 603 (1991) https://doi.org/10.1016/0360-3199(91)90083-U
  11. A. L. Vance, 2003 Hydrogen & Fuel Cells Merit Review Meeting, Berkeley, CA, May 20 (2003)
  12. G. B. Barbi and C. M. Mari, Solid State Ionics, 6, 341 (1982) https://doi.org/10.1016/0167-2738(82)90020-0
  13. S. Dutta, D. L. Block and R. L. Port, Int. J. Hydrogen Energy, 15, 387 (1990) https://doi.org/10.1016/0360-3199(90)90195-5
  14. J. S. Herring, J. E. O'Brien, C. M. Stoots and P. A. Lessing, in Proceedings of ICAPP '04 (Pittsburgh, PA, USA, June, 2004), Paper 4322, p. 1-10
  15. J. S. Benjamin and T. E. Volin, Metall. Trans., 5, 1930 (1974)
  16. P. S. Gilman and J. S. Benjamin, Ann. Rev. Mater. Sci., 13, 279 (1983) https://doi.org/10.1146/annurev.ms.13.080183.001431
  17. L. Lu and M. O. Lai, Mechanical Alloying, Kluwer Academic Publishers, Dordrecht, The Netherlands (1998)
  18. H. Koide, Y. Someya, T. Yoshida and T. Maruyama, Solid State Ionics, 132, 253 (2000) https://doi.org/10.1016/S0167-2738(00)00652-4
  19. W. Z. Zhu and S. C. Deevi, Materials Science and Engineering A, 362, 228 (2003) https://doi.org/10.1016/S0921-5093(03)00620-8
  20. J. H. Lee, H. Moon, H. W. Lee, J. Kim, J. D. Kim and K. H. Yoon, Solid State Ionics, 148, 15 (2002) https://doi.org/10.1016/S0167-2738(02)00050-4