• Title/Summary/Keyword: measure space

Search Result 1,500, Processing Time 0.026 seconds

A TRANSLATION OF AN ANALOGUE OF WIENER SPACE WITH ITS APPLICATIONS ON THEIR PRODUCT SPACES

  • Cho, Dong Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.749-763
    • /
    • 2022
  • Let C[0, T] denote an analogue of Weiner space, the space of real-valued continuous on [0, T]. In this paper, we investigate the translation of time interval [0, T] defining the analogue of Winer space C[0, T]. As applications of the result, we derive various relationships between the analogue of Wiener space and its product spaces. Finally, we express the analogue of Wiener measures on C[0, T] as the analogue of Wiener measures on C[0, s] and C[s, T] with 0 < s < T.

INTEGRATION WITH RESPECT TO ANALOGUE OF WIENER MEASURE OVER PATHS IN WIENER SPACE AND ITS APPLICATIONS

  • Ryu, Kun-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.131-149
    • /
    • 2010
  • In 1992, the author introduced the definition and the properties of Wiener measure over paths in Wiener space and this measure was investigated extensively by some mathematicians. In 2002, the author and Dr. Im presented an article for analogue of Wiener measure and its applications which is the generalized theory of Wiener measure theory. In this note, we will derive the analogue of Wiener measure over paths in Wiener space and establish two integration formulae, one is similar to the Wiener integration formula and another is similar to simple formula for conditional Wiener integral. Furthermore, we will give some examples for our formulae.

AN INTEGRATION FORMULA FOR ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.711-720
    • /
    • 2010
  • In this note, we will establish the integration formulae for functionals such as $F(x)=\prod_{j=1}^{n}\;x(s_j)^2$ and $G(x)=\exp\{{\lambda}{\int}_{0}^{t}\;x(s)^2dm_L(s)\}$ in the analogue of Wiener measure space and using our formulae, we will derive some formulae for series.

THE ARCSINE LAW IN THE GENERALIZED ANALOGUE OF WIENER SPACE

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.67-76
    • /
    • 2017
  • In this note, we prove the theorems in the generalized analogue of Wiener space corresponding to the second and the third arcsine laws in either concrete or analogue of Wiener space [1, 2, 7] and we show that our results are exactly same to either the concrete or the analogue of Wiener case when the initial condition gives either the Dirac measure at the origin or the probability Borel measure.

SEQUENCES IN THE RANGE OF A VECTOR MEASURE

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2007
  • We prove that every strong null sequence in a Banach space X lies inside the range of a vector measure of bounded variation if and only if the condition $\mathcal{N}_1(X,{\ell}_1)={\Pi}_1(X,{\ell}_1)$ holds. We also prove that for $1{\leq}p&lt;{\infty}$ every strong ${\ell}_p$ sequence in a Banach space X lies inside the range of an X-valued measure of bounded variation if and only if the identity operator of the dual Banach space $X^*$ is ($p^{\prime}$,1)-summing, where $p^{\prime}$ is the conjugate exponent of $p$. Finally we prove that a Banach space X has the property that any sequence lying in the range of an X-valued measure actually lies in the range of a vector measure of bounded variation if and only if the condition ${\Pi}_1(X,{\ell}_1)={\Pi}_2(X,{\ell}_1)$ holds.

  • PDF

ON SOME PROPERTIES OF THE FUNCTION SPACE M

  • Lee, Joung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.677-685
    • /
    • 2003
  • Let M be the vector space of all real S-measurable functions defined on a measure space (X, S, $\mu$). In this paper, we investigate some topological structure of T on M. Indeed, (M, T) becomes a topological vector space. Moreover, if $\mu$, is ${\sigma}-finite$, we can define a complete invariant metric on M which is compatible with the topology T on M, and hence (M, T) becomes a F-space.

THE HARDY TYPE INEQUALITY ON METRIC MEASURE SPACES

  • Du, Feng;Mao, Jing;Wang, Qiaoling;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1359-1380
    • /
    • 2018
  • In this paper, we prove that if a metric measure space satisfies the volume doubling condition and the Hardy type inequality with the same exponent n ($n{\geq}3$), then it has exactly the n-dimensional volume growth. Besides, three interesting applications of this fact have also been given. The first one is that we prove that complete noncompact smooth metric measure space with non-negative weighted Ricci curvature on which the Hardy type inequality holds with the best constant are isometric to the Euclidean space with the same dimension. The second one is that we show that if a complete n-dimensional Finsler manifold of nonnegative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then its flag curvature is identically zero. The last one is an interesting rigidity result, that is, we prove that if a complete n-dimensional Berwald space of non-negative n-Ricci curvature satisfies the Hardy type inequality with the best constant, then it is isometric to the Minkowski space of dimension n.

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.

THE GENERALIZED ANALOGUE OF WIENER MEASURE SPACE AND ITS PROPERTIES

  • Ryu, Kun-Sik
    • Honam Mathematical Journal
    • /
    • v.32 no.4
    • /
    • pp.633-642
    • /
    • 2010
  • In this note, we introduce the definition of the generalized analogue of Wiener measure on the space C[a, b] of all real-valued continuous functions on the closed interval [a, b], give several examples of it and investigate some important properties of it - the Fernique theorem and the existence theorem of scale-invariant measurable subsets on C[a, b].