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THE GENERALIZED ANALOGUE OF WIENER
MEASURE SPACE AND ITS PROPERTIES

Kun Sik Ryu

Abstract. In this note, we introduce the definition of the gener-
alized analogue of Wiener measure on the space C[a, b] of all real-
valued continuous functions on the closed interval [a, b], give several
examples of it and investigate some important properties of it - the
Fernique theorem and the existence theorem of scale-invariant mea-
surable subsets on C[a, b].

1. Preliminaries

In 1923, Wiener proved the existence theorem of the meaningly mea-
sure on the space C0[a, b], the space of all real-valued continuous func-
tions on a closed bounded interval [a, b] which vanish at a, the so-called
Wiener space in [9]. This is based on the properties of Brownian motion
of a single small particle. In 2002, the author and Dr. Im presented the
definition and properties of analogue of Wiener measure on the space
C[a, b], the space of all real-valued continuous functions on [a, b] in [3].
This is the theory of many particles, moving along the law of Brownian
motion.

In this note, we introduce the definition of the generalized analogue
of Wiener measure space, which is more generalized concept of Wiener
measure space and we give several examples. Furthermore, we inves-
tigate important theorems - the Fernique theorem on C[a, b] and the
existence theorem of scale-invariant measurable subsets on C[a, b].

In this section, we give some notations, definitions and facts which
are needed to understand the subsequent sections.
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Let a and b be two real numbers with a < b. Let α, β : [a, b] → R be
two continuous functions such that β is strictly increasing. Let ϕ be a
positive finite Borel measure on R.

For ~t = (t0, t1, t2, · · · , tn) with a = t0 < t1 < t2 < · · · < tn ≤ b, let

W (~t, ~u; α, β)

=
1√

(2π)n
∏n

j=1(β(tj)− β(tj−1))

exp{−1
2

n∑

j=1

(uj − α(tj)− (uj−1 − α(tj−1)))2

β(tj)− β(tj−1)
}

and let J~t : C[a, b] → Rn+1 be a function with J~t(x) = (x(t0), x(t1), x(t2),
· · · , x(tn)). For Borel subsets B0, B1, · · · , Bn of R, the subset J−1

~t
(
∏n

j=0

Bj) of C[a, b] is called an interval. Let I be the set of all intervals. We
let

mϕ(J−1
~t

(
n∏

j=0

Bj))

=
∫

B0

[ ∫
∏n

j=1 Bj

W (~t, ~u;α, β) d
n∏

j=1

mL(u1, u2, · · · , un)
]
dϕ(u0)

where mL is the Lebesgue measure on R.

Using the Chapman-Kolmogorov equation in [2], we can easily prove
the following theorem.

Theorem 1.1. mϕ is well-defined on I.

By Theorem 2.1 and Theorem 5.1 in [6], the set B(C[a, b]) of all
Borel subsets in C[a, b] with the superemum norm, coincides with the
smallest σ-algebra generated by I and there exists a unique positive
measure ωϕ on (C[a, b],B(C[a, b])) such that ωϕ(I) = mϕ(I) for all I in
I. Here, ωϕ is called the generalized analogue of Wiener measure on
(C[a, b],B(C[a, b])) associated with ϕ.

From the change of variable formula, we have the following theorem.
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Theorem 1.2. (The Wiener integration formula for ωϕ) If f : Rn+1 →
R is a Borel measurable function, then the following equality holds ;

∫

C[a,b]
f(x(t0), x(t1), · · · , x(tn)) dωϕ(x)

∗=
∫

Rn+1

f(u0, u1, · · · , un)W (~t, ~u; α, β) d(
n∏

j=1

mL × ϕ)((u1, u2, · · · , un),

u0),

where
∗= means that if one side exists then both sides exist and the two

values are equal.

Now, we give several examples for our definitions.

Example 1.3. Let ϕ be a positive finite Borel measure on R.
(1) It is not hard to show that ωϕ has no atom.
(2) ωϕ(C[a, b]) = ϕ(R).
(3) For a ≤ t ≤ b, let Jt : C[a, b] → R be a function with Jt(x) = x(t).
Then for any Borel subset E in R,

ωϕ(J−1
~t

(E))

=
1√
2π

∫

R

( ∫

R
χAu0

(u1)e−
u2
1
2 dmL(u1)

)
dϕ(u0)

where Au0 =
√

β(t)− β(a)E + α(t)−α(a) + u0 and χAu0
is the charac-

teristic function with respect to Au0 .
(4) Suppose that f(u) = u is ϕ-integrable. Then for a ≤ t ≤ b,

∫

C[a,b]
x(t)dωϕ(x) = (α(t)− α(a))ϕ(R) +

∫

R
udϕ(u)

If ϕ = δp, the Dirac measure at p,
∫
C[a,b] x(t)dωϕ(x) = α(t) − α(a) +

p and if ϕ has a normal distribution with mean m and variance σ2,∫
C[a,b] x(t)dωϕ(x) = α(t)− α(a) + m.

(5) Suppose that f(u) = u2 is ϕ-integrable. Then for a ≤ t ≤ b,
∫

C[a,b]
x(t)2dωϕ(x)

= (β(t1)− β(a) + (α(t)− α(a))2)ϕ(R) + 2(α(t)− α(a))
∫

R
udϕ(u)

+
∫

R
u2dϕ(u).
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If ϕ = δp then
∫

C[a,b]
x(t)2dωϕ(x)

= β(t)− β(a) + (α(t)− α(a))2 + 2(α(t)− α(a))p + p2

and if ϕ has a normal distribution with mean m and variance σ2, then∫

C[a,b]
x(t)2dωϕ(x)

= β(t)− β(a) + (α(t)− α(a))2 + 2m(α(t)− α(a)) + m2 + σ2.

(6) Suppose that f(u) = u2 is ϕ-integrable and a ≤ t1 ≤ t2 ≤ b. Then
∫

C[a,b]
x(t1)x(t2)dωϕ(x)

= (β(t)− β(a) + (α(t2)− α(t1))(α(t1)− α(a)) + (α(t1)− α(a))2)ϕ(R)

+(α(t2) + α(t1)− 2α(a))
∫

R
udϕ(u) +

∫

R
u2dϕ(u).

(7) For a ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ b and k1 and k2 in R, using the change
of variable formula,

ϕ(R)ωϕ({x in C[a, b] | x(t2)− x(t1) ≤ k1 and x(t4)− x(t3) ≤ k2})
= ωϕ({x in C[a, b] | x(t2)− x(t1) ≤ k1})
× ωϕ({x in C[a, b] | x(t4)− x(t3) ≤ k2}).

Hence, if ϕ is a probability measure on R, then x(t2)−x(t1) and x(t4)−
x(t3) are stochastically independent.
(8) Let F(ϕ) be the Fourier transform of a measure ϕ on R, that is,
[F(ϕ)](ξ) =

∫
R exp{iξu}dϕ(u). Then for a ≤ t ≤ b,

∫

C[a,b]
exp{iξx(t)}dωϕ(x)

= exp{−1
2
ξ2(β(t)− β(a)) + iξ(α(t)− α(a))}[F(ϕ)](ξ).

If ϕ has a normal distribution with mean m and variance σ2 then∫

C[a,b]
exp{iξx(t)}dωϕ(x)

= exp{−1
2
ξ2(β(t)− β(a) + σ2) + i(α(t)− α(a) + m)},
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so Jt(x) = x(t) has a normal distribution with mean α(t) − α(a) + m
and variance β(t)− β(a) + σ2.

2. Fernique’s Theorem for the generalized analogue of Wiener
measure

In 1970, Skorokhod proved that there is a positive real number p1 such
that

∫
B exp{p1‖x‖}dω(x) is finite in [5] and at the same time, Fernique

showed independently that there is a positive real number p2 such that∫
B exp{p2‖x‖2}dω(x) is finite in [4], where (B, ω) is an abstract Wiener

measure space and ‖ · ‖ is a measurable norm in (B, ω). These two
theorems play a very important role in the theory of abstract Wiener
space. In 2009, the author proved that for 1 ≤ d ≤ 2, there is a positive
real number p such that

∫
C[0,1] exp{p‖x‖d}dωϕ(x) is finite where ωϕ is

the analogue of Wiener measure on C[0, 1] in [7].
In this section, we will prove that for 1 ≤ d ≤ 2, there is a positive real

number p such that
∫
C[a,b] exp{p‖x‖d∞}dωϕ(x) is finite under the certain

conditions where ωϕ is the generalized analogue of Wiener measure on
C[a, b].

Throughout in this section, let ϕ be a probability Borel measure on
R and let α be non-increasing.

From the definition of median, directly we obtain the following lemma.

Lemma 2.1. Let X(x) = x(t) − x(s) for x in C[a, b] where a ≤
s < t ≤ b. Then the median med(X) of X is α(t) − α(s), that is,
ωϕ({x in C[a, b] | X(x) ≥ α(t)−α(s)}) ≥ 1

2 and ωϕ({x in C[a, b] | X(x)
≤ α(t)− α(s)}) ≥ 1

2 .

Now, we prove the theorem, which is a key role theorem in this sec-
tion.

Theorem 2.2. For M > 0,

ωϕ({x in C[a, b] | ‖x− x(a)‖∞ ≥ M + α(a)− α(b)})

≤ 2

√
2
π

√
β(b)− β(a)

M + α(a)− α(b)
exp{−(M + α(a)− α(b))2

2(β(b)− β(a))
}.

Proof. Let 〈tn〉 be a dense sequence in [a, b]. For a natural number n,
let Sn(x) = max{x(tk)−x(a)|1 ≤ k ≤ n} and S(x) = sup{x(tn)−x(a) | n
is a natural number } for x in C[a, b]. Then 〈Sn〉 converges to S ωϕ-a.e..
Let us relabel t1, t2, · · · , tn as τn,1, τn,2, · · · , τn,n such that τn,0 = a <
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τn,1 < τn,2 < · · · < τn,n ≤ b. For two natural numbers n and j with
1 ≤ j ≤ n, let Xn,j(x) = x(τn,j)−x(τn,j−1) and Sn,j(x) =

∑j
k=1 Xn,k(x)

for x in C[a, b]. Then Sn,j(x) = x(τn,j)− x(a) for x in C[a, b] and from
(7) in Example 1.3, Xn,1, Xn,2, · · · , Xn,j are stochastically independent.
By Lemma 2.1, med(Sn,j −Sn,n) = α(τn,j)−α(τn,n) and max{Sn,k(x)−
med(Sn,k(x)− Sn,n(x))|1 ≤ k ≤ n} ≥ max{Sn,k(x)|1 ≤ k ≤ n} − α(a) +
α(b) for x in C[a, b]. So, for M > 0,

ωϕ({x in C[a, b] | sup{x(t)− x(a)|a ≤ t ≤ b} ≥ M + α(a)− α(b)})
(1)
= lim

n→∞ωϕ({x in C[a, b] | max{Sn,k(x)|1 ≤ k ≤ n} ≥ M + α(a)

−α(b)})
(2)

≤ lim
n→∞ωϕ({x in C[a, b] | max{Sn,k(x)−med(Sn,k(x)− Sn,n(x))}

≥ M})
(3)

≤ 2 lim
n→∞ωϕ({x in C[a, b]|Sn,n(x)) ≥ M})

(4)
= 2 lim

n→∞

∫

R

∫ ∞

u0+M
[2π(β(τn,n)− β(a))]−

1
2

exp{−(u1 − α(τn,n)− (u0 − α(a)))2

2(β(τn,n)− β(a))
}dmL(u1)dϕ(u0)

(5)
=

√
2
π

lim
n→∞

∫

R

∫ ∞

An

exp{−v2

2
}dmL(v)dϕ(u0)

(6)
=

√
2
π

∫ ∞

A
exp{−v2

2
}dmL(v)

(7)
=

√
2
π

A−1 exp{−A2

2
}.

Step (1) come from the property of measure. By the inequality max{Sn,k

(x) − med(Sn,k(x) − Sn,n(x))|1 ≤ k ≤ n} ≥ max{Sn,k(x)|1 ≤ k ≤
n} − α(a) + α(b) for x in C[a, b], we obtain Step (2). We have Step (3)
by Levy’s inequality in [8]. Using Theorem 1.2 in above, we obtain Step
(4). Putting An = M−α(τn,n)+α(a)√

β(τn,n)−β(a)
and v = u1−α(τn,n)−(u0−α(a))√

β(τn,n)−β(a)
, we have

Step (5). Letting A = M−α(b)+α(a)√
β(b)−β(a)

, Step (6) results from the continuity

of α and β. Step (7) holds because A > 0 and
∫∞
A exp{−v2

2 }dmL(v) ≤
A−1

∫∞
A v exp{−v2

2 }dmL(v) = A−1 exp{−A2

2 }. In the essentially similar
manner, one can prove that ωϕ({x in C[a, b] | inf{x(t) − x(a)|a ≤
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t ≤ b} ≤ −(M + α(a)− α(b))}) ≤
√

2
πA−1 exp{−A2

2 }, so, from two our
inequalities, we can obtain a given inequality.

Theorem 2.3. If 0 < d < 2, then for all positive real number p,∫
C[a,b] exp{p‖x − x(a)‖d∞}dωϕ(x) is finite and for 0 < p < 1

2(β(b)−β(a)) ,∫
C[a,b] exp{p‖x− x(a)‖2∞} dωϕ(x) is finite.

Proof. For any non-negative integer n, let An = {x in C[a, b] | n ≤
‖x−x(a)‖∞ < n+1}. Let N be a natural number with N > α(a)−α(b).
Then, by Theorem 2.2,

∫

C[a,b]
exp{p‖x− x(a)‖d

∞}dωϕ(x)

≤
N−1∑

n=0

exp{p(n + 1)d}

+
∞∑

n=N

exp{p(n + 1)d}ωϕ({x in C[a, b] | ‖x− x(a)‖ > n})

≤
N−1∑

n=0

exp{p(n + 1)d}

+2

√
2(β(b)− β(a))

π

∞∑

n=N

exp{p(n + 1)d − n2

2(β(b)− β(a))
}.

From the root test, if 0 < d < 2 then for all positive real number p,
the right-side term in above converges and if d = 2 then for 0 < p <

1
2(β(b)−β(a)) , the right-side term in above converges.

Using the inequalities (|a|+ |b|)d ≤ 2d−1(|a|d + |b|d) for 1 ≤ d < 2 and
(|a|+ |b|)2 ≤ 2(|a|2 + |b|2), we can prove the following theorem which is
a main theorem in this section.

Theorem 2.4. (Fernique’s theorem for the generalized analogue of
Wiener measure) If 1 ≤ d < 2 and

∫
R exp{2dp|u|d}dϕ(u) is finite then∫

C[a,b] exp{p‖x‖d∞}dωϕ(x) is finite and if p < 1
2(β(b)−β(a)) and

∫
R exp{4p|u|2}

dϕ(u) is finite then
∫
C[a,b] exp{p ‖x‖2∞}dωϕ(x) is finite.
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3. Scale-invariant measurable subsets in the generalized ana-
logue of Wiener measure space

In 1979, Johnson and Skoug presented a nice paper related to the
scale-invariant measurable subsets of the concrete Wiener space in [1].
This was contributed the big development of the theories of Wiener
process.

In this section, we establish the existence theorem of scale-invariant
measurable subsets of the generalized analogue of Wiener space.

Throughout in this section, let ϕ be a probability Borel measure on
R.

For ~t(n) = (t0, t1, t2, · · · , tn) with a = t0 < t1 < t2 < · · · < tn = b, let
‖~t(n)‖ = max{tj− tj−1|j = 1, 2, · · · , n} and let S~t(n)(x) =

∑n
j=1(x(tj)−

x(tj−1))2 for x in C[a, b]. Suppose that limn→∞ ‖~t(n)‖ = 0.

Theorem 3.1. There is a subsequence 〈~t(σ(n))〉 of 〈~t(n)〉 such that
〈S~t(σ(n))〉 converges to β(b)− β(a) ωϕ-a.e.

Proof. Using Theorem 2.2, we have

∫

C[a,b]
S~t(n)(x)dωϕ(x)

=
n∑

j=1

(β(tj)− β(tj−1)) +
n∑

j=1

(α(tj)− α(tj−1))2

= β(b)− β(a) +
n∑

j=1

(α(tj)− α(tj−1))2.

Since α is Riemann integrable on [a, b], limn→∞
∑n

j=1(α(tj)−α(tj−1))2 =
0, so we have

lim
n→∞

∫

C[a,b]
S~t(n)(x)dωϕ(x) = β(b)− β(a).
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Similarly,
∫

C[a,b]
S~t(n)(x)2dωϕ(x)

=
n∑

j,k=1

j 6=k

∫

C[a,b]
(x(tj)− x(tj−1))2(x(tk)− x(tk−1))2dωϕ(x)

+
n∑

j=1

∫

C[a,b]
(x(tj)− x(tj−1))4dωϕ(x)

=
n∑

j,k=1

j 6=k

[(β(tj)− β(tj−1)) + (α(tj)− α(tj−1))2][(β(tk)− β(tk−1))

+(α(tk)− α(tk−1))2] +
n∑

j=1

[3(β(tj)− β(tj−1))2 − 6(α(tj)− α(tj−1))6

×((β(tj)− β(tj−1)) + (α(tj)− α(tj−1))2) + (α(tj)− α(tj−1))4]

= (β(b)− β(a))2 + 2
n∑

j=1

(β(tj)− β(tj−1))2 + 2(β(b)− β(a))

×
n∑

j=1

(α(tj)− α(tj−1))2 − 8
n∑

j=1

(α(tj)− α(tj−1))2(β(tj)− β(tj−1)).

Since α and β are both Riemann integrable on [a, b] and β is increasing,
limn→∞

∑n
j=1(α(tj) − α(tj−1))2 = limn→∞

∑n
j=1(β(tj) − β(tj−1))2 =

limn→∞
∑n

j=1(α(tj)− α(tj−1))2(β(tj)− β(tj−1)) = 0, so we have

lim
n→∞

∫

C[a,b]
S~t(n)(x)2dωϕ(x) = (β(b)− β(a))2.

Hence, limn→∞
∫
C[a,b](S~t(n)(x) − (β(b) − β(a)))2dωϕ(x) = 0, that is,

〈S~t(n)〉 converges to β(b)−β(a) in L2(C[a, b], ωϕ)-sense. Thus, there is a
subsequence 〈~t(σ(n))〉 of 〈~t(n)〉 such that 〈S~t(n)〉 converges to β(b)−β(a)
ωϕ-a.e., as desired.

Given λ > 0 and let Cλ = {x in C[a, b] | limn→∞ S~t(σ(n))(x) =
λ2(β(b)−β(a))} and let C0 = {x in C[a, b] | limn→∞ S~t(σ(n))(x) doesn′t
exist}. Then we have the following theorem by the similar method as in
[1].
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Theorem 3.2. (1) For λ ≥ 0, Cλ is Borel measurable.
(2) C[a, b] = ∪λ≥0Cλ

(3) If λ1 and λ2 are distinct positive real numbers then Cλ1 ∩ Cλ2 = ∅.
(4) For two positive real numbers λ1 and λ2, λ1Cλ2 = Cλ1λ2 .
(5) ωϕ(C1) = 1.
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