Communications for Statistical Applications and Methods
/
v.4
no.3
/
pp.929-941
/
1997
In this paper, we propose the minimum risk estimator (MRE) and the approximate maximum likelihood estimator (AMLE) of the location and the scale parameters of the two-parameter exponential distribution with Type-II censoring. The MRE's can be derived by minimizing the mean squared error among the class of estimators which include some estimators as special cases. We show that the MRE's are more efficient than the other estimators of the scale and the location parameter in the terms of the mean squared error.
Kim, Do Wan;Mun, Sungho;An, Deok Soon;Son, Hyeon Jang
International Journal of Highway Engineering
/
v.15
no.6
/
pp.79-91
/
2013
PURPOSES : The methods of measuring the sound from the noise source are Pass-by method and NCPX (Noble Close Proximity) method. These measuring methods were used to determine the linkage of TAPL (Total Acoustic Pressure Level) and SPL (Sound Pressure Level) in terms of frequencies. METHODS : The frequency analysis methods are DFT (Discrete Fourier Transform) and FFT (Fast Fourier Transform), CPB (Constant Percentage Bandwidth). The CPB analysis was used in this study, based on the 1/3 octave band option configured for the frequency analysis. Furthermore, the regression analysis was used at the condition related to the sound attenuation effect. The MPE (Mean Percentage Error) and RMSE (Root Mean Squared Error) were utilized for calculating the error. RESULTS : From the results of the CPB frequency analysis, the predicted SPL along the frequency has 99.1% maximum precision with the measured SPL, resulting in roughly 1 dB(A) error. The TAPL results have precision by 99.37% with the measured TAPL. The predicted TAPL results at this study by using the SPL prediction model along the frequency have the maximum precision of 98.37% with the vehicle velocity. CONCLUSIONS : The Predicted SPL model along the frequency and the TAPL result by using the predicted SPL model have a high level of accuracy through this study. But the vehicle velocity-TAPL prediction model from the previous study by using the log regression analysis cannot be consistent with the TAPL result by using the predicted SPL model.
The Journal of the Korea institute of electronic communication sciences
/
v.16
no.4
/
pp.625-632
/
2021
This paper studies the effect of the number of filters in the CNN (Convolutional Neural Network) layer on the performance of a noise attenuator. Speech is estimated from a noised speech signal using a 64-neuron, 16-kernel CNN filter and an error back-propagation algorithm. In this study, in order to verify the performance of the noise attenuator with respect to the number of filters, a program using Keras library was written and simulation was performed. As a result of simulation, it can be seen that this system has the smallest MSE (Mean Squared Error) and MAE (Mean Absolute Error) values when the number of filters is 16, and the performance is the lowest when there are 4 filters. And when there are more than 8 filters, it was shown that the MSE and MAE values do not differ significantly depending on the number of filters. From these results, it can be seen that about 8 or more filters must be used to express the characteristics of the speech signal.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.2C
/
pp.166-173
/
2007
In Orthogonal Frequency Division Multiplexing (OFDM) systems, Narrow-Band Jamming (NBJ) over pilot tones used for channel estimation degrades the system performance. In this paper, we propose a new jammed pilot detection and elimination algorithm to overcome this problem. Moreover, the average Mean-Squared Error (MSE) on one OFDM symbol both under jammed and removed pilot subcarrier is analyzed. And then, the Symbol Error Rate (SER) performance of the channel estimation scheme using the proposed algorithm is evaluated by simulation. We can confirm that the channel estimator with the proposed algorithm improves the channel estimation performance at a high jamming power.
This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.
Journal of the Korean Data and Information Science Society
/
v.19
no.4
/
pp.1219-1231
/
2008
The main object of this paper is to develop a leave-one-out(LOO) bound of all pairwise comparison error correcting output codes (APC-ECOC). To avoid using classifiers whose corresponding target values are 0 in APC-ECOC and requiring pilot estimates we developed a bound based on mean misclassification probability(MMP). It can be used to tune kernel hyperparameters. Our empirical experiment using kernel mean squared estimate(KMSE) as the binary classifier indicates that the bound leads to good estimates of kernel hyperparameters.
Communications for Statistical Applications and Methods
/
v.5
no.1
/
pp.231-238
/
1998
A two stage shrinkage testimator for the mean of an exponential distribution is considered with the assumption that an initial estimate of the mean is available. Mean squared error(MSE) of testimator and its relative efficiency (to usual single sample mean) are briefly reviewed. It is shown that relative efficiency depends only on the ratio of true mean value and its initial estimate.
Error surfaces provide us with very important information for training of feed-forward neural networks (FNNs). In this paper, we draw the contour plots of various error or objective functions for training of FNNs. Firstly, when applying FNNs to classifications, the weakness of mean-squared error is explained with the viewpoint of error contour plot. And the classification figure of merit, mean log-square error, cross-entropy error, and n-th order extension of cross-entropy error objective functions are considered for the contour plots. Also, the recently proposed target node method is explained with the viewpoint of contour plot. Based on the contour plots, we can explain characteristics of various error or objective functions when training of FNNs proceeds.
In this paper we consider a new estimator of mean residual life (MRL), based on the partial moment of the distribution. The parameters of a partial moment are estimated by its maximum likelihood estimators when the underlying distribution is known. Though the new estimator is not a consistent estimator of the MRL, it is shown to have smaller mean squared error than the well known empirical MRL estimator for certain parametric families. Numerical summaries of the mean squared errors of the new estimator are presented.
Communications for Statistical Applications and Methods
/
v.9
no.1
/
pp.249-259
/
2002
In order to estimate the mean and variance for a Normal distribution which is truncated at both right and left sides, maximum likelihood estimators based on the entire sample from the original distribution are compared with the sample mean and variance of the censored sample which is the data remaining after truncation using simulation. We found that, surprisingly, the mean squared error of the mean based on the censored data Is smaller than that of the full sample estimators.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.