• Title/Summary/Keyword: mean-shift algorithm

Search Result 141, Processing Time 0.029 seconds

A Framework of Recognition and Tracking for Underwater Objects based on Sonar Images : Part 2. Design and Implementation of Realtime Framework using Probabilistic Candidate Selection (소나 영상 기반의 수중 물체 인식과 추종을 위한 구조 : Part 2. 확률적 후보 선택을 통한 실시간 프레임워크의 설계 및 구현)

  • Lee, Yeongjun;Kim, Tae Gyun;Lee, Jihong;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.164-173
    • /
    • 2014
  • In underwater robotics, vision would be a key element for recognition in underwater environments. However, due to turbidity an underwater optical camera is rarely available. An underwater imaging sonar, as an alternative, delivers low quality sonar images which are not stable and accurate enough to find out natural objects by image processing. For this, artificial landmarks based on the characteristics of ultrasonic waves and their recognition method by a shape matrix transformation were proposed and were proven in Part 1. But, this is not working properly in undulating and dynamically noisy sea-bottom. To solve this, we propose a framework providing a selection phase of likelihood candidates, a selection phase for final candidates, recognition phase and tracking phase in sequence images, where a particle filter based selection mechanism to eliminate fake candidates and a mean shift based tracking algorithm are also proposed. All 4 steps are running in parallel and real-time processing. The proposed framework is flexible to add and to modify internal algorithms. A pool test and sea trial are carried out to prove the performance, and detail analysis of experimental results are done. Information is obtained from tracking phase such as relative distance, bearing will be expected to be used for control and navigation of underwater robots.

Adaptive Segmentation Approach to Extraction of Road and Sky Regions (도로와 하늘 영역 추출을 위한 적응적 분할 방법)

  • Park, Kyoung-Hwan;Nam, Kwang-Woo;Rhee, Yang-Won;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.105-115
    • /
    • 2011
  • In Vision-based Intelligent Transportation System(ITS) the segmentation of road region is a very basic functionality. Accordingly, in this paper, we propose a region segmentation method using adaptive pattern extraction technique to segment road regions and sky regions from original images. The proposed method consists of three steps; firstly we perform the initial segmentation using Mean Shift algorithm, the second step is the candidate region selection based on a static-pattern matching technique and the third is the region growing step based on a dynamic-pattern matching technique. The proposed method is able to get more reliable results than the classic region segmentation methods which are based on existing split and merge strategy. The reason for the better results is because we use adaptive patterns extracted from neighboring regions of the current segmented regions to measure the region homogeneity. To evaluate advantages of the proposed method, we compared our method with the classical pattern matching method using static-patterns. In the experiments, the proposed method was proved that the better performance of 8.12% was achieved when we used adaptive patterns instead of static-patterns. We expect that the proposed method can segment road and sky areas in the various road condition in stable, and take an important role in the vision-based ITS applications.

Welfare Interface using Multiple Facial Features Tracking (다중 얼굴 특징 추적을 이용한 복지형 인터페이스)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.

Performance Analysis of DMF Acquisition System in Frequency-Selective Rayleigh Fading Channel (주파수 선택적 레일리 페이딩 채널에서의 DMF 초기동기 장치의 성능분석)

  • 김성철;이연우;조춘근;박형근;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7B
    • /
    • pp.1351-1360
    • /
    • 1999
  • In frequency selective channels, conventional PN code acquisition schemes are not ideal candidates. This is because they are primarily designed for the AWGN channel. In this paper, a direct-sequence spread-spectrum(DSSS) PN code acquisition system based on digital matched filtering (DMF) with automatic threshold control(ATC) algorithm is presented and analyzed with regards to probability of detection and probability of false alarm. These two important probabilities, the probability of detection ($P_D$) and the probability of false alarm ($P_{FA}$) are derived and analyzed in considering Doppler shift, sampling rate, mean acquisition time, and PN chip rate in frequency selective Rayleigh fading channel when using serial-search method as detection technique. From computer simulation results of a DMF acquisition system model, it is shown that the performance of the acquisition system using ATC algorithm is better than that of constant threshold system.

  • PDF

Real-time Hand Region Detection and Tracking using Depth Information (깊이정보를 이용한 실시간 손 영역 검출 및 추적)

  • Joo, SungIl;Weon, SunHee;Choi, HyungIl
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • In this paper, we propose a real-time approach for detecting and tracking a hand region by analyzing depth images. We build a hand model in advance. The model has the shape information of a hand. The detecting process extracts out moving areas in an image, which are possibly caused by moving a hand in front of a camera. The moving areas can be identified by analyzing accumulated difference images and applying the region growing technique. The extracted moving areas are compared against a hand model to get justified as a hand region. The tracking process keeps the track of center points of hand regions of successive frames. For this purpose, it involves three steps. The first step is to determine a seed point that is the closest point to the center point of a previous frame. The second step is to perform region growing to form a candidate region of a hand. The third step is to determine the center point of a hand to be tracked. This point is searched by the mean-shift algorithm within a confined area whose size varies adaptively according to the depth information. To verify the effectiveness of our approach, we have evaluated the performance of our approach while changing the shape and position of a hand as well as the velocity of hand movement.

Applicability of Geo-spatial Processing Open Sources to Geographic Object-based Image Analysis (GEOBIA)

  • Lee, Ki-Won;Kang, Sang-Goo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.379-388
    • /
    • 2011
  • At present, GEOBIA (Geographic Object-based Image Analysis), heir of OBIA (Object-based Image Analysis), is regarded as an important methodology by object-oriented paradigm for remote sensing, dealing with geo-objects related to image segmentation and classification in the different view point of pixel-based processing. This also helps to directly link to GIS applications. Thus, GEOBIA software is on the booming. The main theme of this study is to look into the applicability of geo-spatial processing open source to GEOBIA. However, there is no few fully featured open source for GEOBIA which needs complicated schemes and algorithms, till It was carried out to implement a preliminary system for GEOBIA running an integrated and user-oriented environment. This work was performed by using various open sources such as OTB or PostgreSQL/PostGIS. Some points are different from the widely-used proprietary GEOBIA software. In this system, geo-objects are not file-based ones, but tightly linked with GIS layers in spatial database management system. The mean shift algorithm with parameters associated with spatial similarities or homogeneities is used for image segmentation. For classification process in this work, tree-based model of hierarchical network composing parent and child nodes is implemented by attribute join in the semi-automatic mode, unlike traditional image-based classification. Of course, this integrated GEOBIA system is on the progressing stage, and further works are necessary. It is expected that this approach helps to develop and to extend new applications such as urban mapping or change detection linked to GIS data sets using GEOBIA.

Impact of Multipath Fading on the Performance of the DDLMS Based Spatio Temporal Smart Antenna (다중경로페이딩이 DDLMS 기반 스마트 안테나의 성능에 미치는 영향)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.871-879
    • /
    • 2009
  • The performance variations of a spatio temporal smart antenna which is equipped at the basestation of CDMA cellular communication network due to the parametric change of multipath fading environment are studied in this paper. The smart antenna of interest employs space diversity based adaptive array structure in conjunction with rake receiver that has fingers the number of which is the same as that of multipath links. The beamforming is achieved via LMS(Least Mean Square) algorithm in which a reference signal is generated using decision directed formula. It has been shown by computer simulation that the performance of our smart antenna of interest depends significantly upon not only the degree of desired signal's DOA(Direction of Arrival)spread but the number of fingers of the rake receiver. The relative insensitivity of the smart antenna's performance on desired signal's delay spread has also been observed. Computer simulation has shown that the increase of the number of fingers brings in a nonlinear enhancement of the performance of our smart antenna. The renewal of weight vector in the beamforming procedure is taken place at post PN despread stage.

An Evaluation of Multiple-input Dual-output Run-to-Run Control Scheme for Semiconductor Manufacturing

  • Fan, Shu-Kai-S.;Lin, Yen
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.54-67
    • /
    • 2005
  • This paper provides an evaluation of an optimization-based, multiple-input double-output (MIDO) run-to-run (R2R) control scheme for general semiconductor manufacturing processes. The controller in this research, termed adaptive dual response optimizing controller (ADROC), can serve as a process optimizer as well as a recipe regulator between consecutive runs of wafer fabrication. In evaluation, it is assumed that the equipment model could be appropriately described by a pair of second-order polynomial functions in terms of a set of controllable variables. Of practical relevance is to consider a drifting effect in the equipment model since in common semiconductor practice the process tends to drift due to machine aging and tool wearing. We select a typical application of R2R control to chemical mechanical planarization (CMP) in semiconductor manufacturing in this evaluation, and there are five different CMP process scenarios demonstrated, including mean shift, variance increase, and IMA disturbances. For the controller, ADROC, an on-line estimation technique is implemented in a self-tuning (ST) control manner for the adaptation purpose. Subsequently, an ad hoc global optimization algorithm based on the dual response approach, arising from the response surface methodology (RSM) literature, is used to seek the optimum recipe within the acceptability region for the execution of next run. The main components of ADROC are described and its control performance is assessed. It reveals from the evaluation that ADROC can provide excellent control actions for the MIDO R2R situations even though the process exhibits complicated, nonlinear interaction effects between control variables, and the drifting disturbances.

A Study on Obtaining Tree Data from Green Spaces in Parks Using Unmanned Aerial Vehicle Images: Focusing on Mureung Park in Chuncheon

  • Lee, Do-Hyung;Kil, Sung-Ho;Lee, Su-Been
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.441-450
    • /
    • 2021
  • Background and objective: The purpose of study is to analyze the three-dimensional (3D) structure by creating a 3D model for green spaces in a park using unmanned aerial vehicle (UAV) images. Methods: After producing a digital surface model (DSM) and a digital terrain model (DTM) using UAV images taken in Mureung Park in Chuncheon-si, we generated a digital tree height model (DHM). In addition, we used the mean shift algorithm to test the classification accuracy, and obtain accurate tree height and volume measures through field survey. Results: Most of the tree species planted in Mureung Park were Pinus koraiensis, followed by Pinus densiflora, and Zelkova serrata, and most of the shrubs planted were Rhododendron yedoense, followed by Buxus microphylla, and Spiraea prunifolia. The average height of trees measured at the site was 7.8 m, and the average height estimated by the model was 7.5 m, showing a difference of about 0.3 m. As a result of the t-test, there was no significant difference between height values of the field survey data and the model. The estimated green coverage and volume of the study site using the UAV were 5,019 m2 and 14,897 m3, respectively, and the green coverage and volume measured through the field survey were 6,339 m2 and 17,167 m3. It was analyzed that the green coverage showed a difference of about 21% and the volume showed a difference of about 13%. Conclusion: The UAV equipped with RTK (Real-Time Kinematic) and GNSS (Global Navigation Satellite System) modules used in this study could collect information on tree height, green coverage, and volume with relatively high accuracy within a short period of time. This could serve as an alternative to overcome the limitations of time and cost in previous field surveys using remote sensing techniques.

Automated Analyses of Ground-Penetrating Radar Images to Determine Spatial Distribution of Buried Cultural Heritage (매장 문화재 공간 분포 결정을 위한 지하투과레이더 영상 분석 자동화 기법 탐색)

  • Kwon, Moonhee;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.551-561
    • /
    • 2022
  • Geophysical exploration methods are very useful for generating high-resolution images of underground structures, and such methods can be applied to investigation of buried cultural properties and for determining their exact locations. In this study, image feature extraction and image segmentation methods were applied to automatically distinguish the structures of buried relics from the high-resolution ground-penetrating radar (GPR) images obtained at the center of Silla Kingdom, Gyeongju, South Korea. The major purpose for image feature extraction analyses is identifying the circular features from building remains and the linear features from ancient roads and fences. Feature extraction is implemented by applying the Canny edge detection and Hough transform algorithms. We applied the Hough transforms to the edge image resulted from the Canny algorithm in order to determine the locations the target features. However, the Hough transform requires different parameter settings for each survey sector. As for image segmentation, we applied the connected element labeling algorithm and object-based image analysis using Orfeo Toolbox (OTB) in QGIS. The connected components labeled image shows the signals associated with the target buried relics are effectively connected and labeled. However, we often find multiple labels are assigned to a single structure on the given GPR data. Object-based image analysis was conducted by using a Large-Scale Mean-Shift (LSMS) image segmentation. In this analysis, a vector layer containing pixel values for each segmented polygon was estimated first and then used to build a train-validation dataset by assigning the polygons to one class associated with the buried relics and another class for the background field. With the Random Forest Classifier, we find that the polygons on the LSMS image segmentation layer can be successfully classified into the polygons of the buried relics and those of the background. Thus, we propose that these automatic classification methods applied to the GPR images of buried cultural heritage in this study can be useful to obtain consistent analyses results for planning excavation processes.