DOI QR코드

DOI QR Code

Real-time Hand Region Detection and Tracking using Depth Information

깊이정보를 이용한 실시간 손 영역 검출 및 추적

  • Received : 2012.09.11
  • Accepted : 2012.09.28
  • Published : 2012.12.31

Abstract

In this paper, we propose a real-time approach for detecting and tracking a hand region by analyzing depth images. We build a hand model in advance. The model has the shape information of a hand. The detecting process extracts out moving areas in an image, which are possibly caused by moving a hand in front of a camera. The moving areas can be identified by analyzing accumulated difference images and applying the region growing technique. The extracted moving areas are compared against a hand model to get justified as a hand region. The tracking process keeps the track of center points of hand regions of successive frames. For this purpose, it involves three steps. The first step is to determine a seed point that is the closest point to the center point of a previous frame. The second step is to perform region growing to form a candidate region of a hand. The third step is to determine the center point of a hand to be tracked. This point is searched by the mean-shift algorithm within a confined area whose size varies adaptively according to the depth information. To verify the effectiveness of our approach, we have evaluated the performance of our approach while changing the shape and position of a hand as well as the velocity of hand movement.

본 논문에서는 실시간 손동작 분석을 위한 깊이정보 기반 손 영역 검출 및 추적 방법을 제안한다. 이를 위해 손 영역 검출단계에서는 깊이정보만을 이용하여 손 영역의 특징인 형태모델을 생성하고, 검출 시 움직임 정보와 영역 확장(Region Growing)을 통해 객체를 추출한다. 추출된 객체는 사전에 생성된 형태모델과 크기정보를 분석하여 최종 손 영역으로 판정한다. 판정된 손 객체는 추적단계에서 중심점 전이 과정을 통해 이전 중심점과의 최근접점을 획득하고, 최근접점으로부터 영역 확장과 깊이기반 적응적 평균 이동 기법(DAM-Shift)을 통해 새로운 중심점을 검출하여 추적한다. 마지막으로 성능 검증을 위해 다양한 손 모양과 속도 및 위치에 대한 다양한 환경에서 실험하고, 검출속도와 추적된 궤적의 정량적, 정성적 분석을 통해 제안하는 방법의 효율성을 입증한다.

Keywords

References

  1. V. Pavlovic, R. Sharma, and T. Huang, "Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review", IEEE Trans. on PAMI, Vol.19, No.7, pp.677-695, 1997. https://doi.org/10.1109/34.598226
  2. C. Manresa, J. Varona, R. Mas, Francisco, and J. Perales, "Hand Tracking and Gesture Recognition for Human- Computer Interaction", Electronic Letters on Computer Vision and Image Analysis, Vol.5, No.3, pp.96-104, 2005.
  3. M. G. Hwang, H. R. Kim, S. B. Kang, and T. K. Ynag, "Vision Based Real-time Hand Shape Recognition Using Fuzzy Inference", Journal of Korean Institute of Information Technology, Vol.6, No.2, pp.53-59, 2008.
  4. H. I. Suk, and B. H. Sin, "Dynamic Bayesian Network based Two-Hand Gesture Recognition", Journal of KIISE : Software and Applications, Vol.35, No.4, 2008.
  5. A. Yilmaz, O. Javed, and M. Shah, "Object tracing: A survey", ACM Comput. Surv., Vol.38, No.4, Dec., 2006.
  6. B. Stenger, "Template-Based Hand Pose Recognition Using Multiple Cues", ACCV 2006, LNCS. 3852, pp.551-560, 2006.
  7. P. Breuer, C. Eckes, and S. Muller, "Hand Gesture Recognition with a novel IR Time-of-Flight Range Camera-A pilot study", LNCS.4418, 247, 2007.
  8. I. Oikonomidis, N. Kyriazis, and A. A. Argyros, "Efficient model-based 3D tracking of hand articulations using Kinect", in British Machine Vision Conference, Dundee, UK, pp.101.1-101.11, 2011.
  9. S. H. Park, S. J. Yu, J. R. Kim, S. J. Kim, and S. Y. Lee, "3D hand tracking using Kalman filter in depth space", EURASIP Journal on Advances in Signal Processing, Vol.2012, No.1, pp.1-18, 2012. https://doi.org/10.1186/1687-6180-2012-1
  10. M. B. Holte, T. B. Moeslund, and P. Fihl, "Fusion of range and intensity information for view invariant gesture recognition", in IEEE Computer Society Conference on Computer Vision & Pattern Recognition Workshops, Anchorage, AK, U.S.A, pp.1-7, 2008.
  11. H. S. Yang, and H. W. Jung, "A study on hand recognition in image for multimedia system", The Journal of the Korea Contents Association, Vol.5, No.2, pp.267-274, 2005.
  12. PrimeSensor http://www.primesense.com
  13. H. Breu, J. Gil, D. Kirkpatrick, M. Werman, "Linear Time Euclidean Distance Transform Algorithms", Pattern Analysis and Machine Intelligence, IEEE Transactions, Vol.17, No.5, pp.529-533, 1995. https://doi.org/10.1109/34.391389
  14. http://www.imageprocessingplace.com/downloads_V3 /root_downloads/tutorials/contour_tracing_Abeer_George_Ghunei m/index.html
  15. C. P. Chen, Y. T. Chen, P. H. Lee, Y. P. Tsai, and S. Lei, "Real-time Hand Tracking on Depth Images", Visual Communications and Image Processing (VCIP), IEEE, pp.1-4, 2011.

Cited by

  1. Hand Region Tracking and Fingertip Detection based on Depth Image vol.18, pp.8, 2013, https://doi.org/10.9708/jksci.2013.18.8.065
  2. Real-time Hand Region Detection based on Cascade using Depth Information vol.2, pp.10, 2013, https://doi.org/10.3745/KTSDE.2013.2.10.713