Abstract
In this paper, we propose a real-time approach for detecting and tracking a hand region by analyzing depth images. We build a hand model in advance. The model has the shape information of a hand. The detecting process extracts out moving areas in an image, which are possibly caused by moving a hand in front of a camera. The moving areas can be identified by analyzing accumulated difference images and applying the region growing technique. The extracted moving areas are compared against a hand model to get justified as a hand region. The tracking process keeps the track of center points of hand regions of successive frames. For this purpose, it involves three steps. The first step is to determine a seed point that is the closest point to the center point of a previous frame. The second step is to perform region growing to form a candidate region of a hand. The third step is to determine the center point of a hand to be tracked. This point is searched by the mean-shift algorithm within a confined area whose size varies adaptively according to the depth information. To verify the effectiveness of our approach, we have evaluated the performance of our approach while changing the shape and position of a hand as well as the velocity of hand movement.
본 논문에서는 실시간 손동작 분석을 위한 깊이정보 기반 손 영역 검출 및 추적 방법을 제안한다. 이를 위해 손 영역 검출단계에서는 깊이정보만을 이용하여 손 영역의 특징인 형태모델을 생성하고, 검출 시 움직임 정보와 영역 확장(Region Growing)을 통해 객체를 추출한다. 추출된 객체는 사전에 생성된 형태모델과 크기정보를 분석하여 최종 손 영역으로 판정한다. 판정된 손 객체는 추적단계에서 중심점 전이 과정을 통해 이전 중심점과의 최근접점을 획득하고, 최근접점으로부터 영역 확장과 깊이기반 적응적 평균 이동 기법(DAM-Shift)을 통해 새로운 중심점을 검출하여 추적한다. 마지막으로 성능 검증을 위해 다양한 손 모양과 속도 및 위치에 대한 다양한 환경에서 실험하고, 검출속도와 추적된 궤적의 정량적, 정성적 분석을 통해 제안하는 방법의 효율성을 입증한다.