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Abstract. This paper provides an evaluation of an optimization-based, multiple-input double-output (MIDO) 
run-to-run (R2R) control scheme for general semiconductor manufacturing processes. The controller in this   
research, termed adaptive dual response optimizing controller (ADROC), can serve as a process optimizer as 
well as a recipe regulator between consecutive runs of wafer fabrication. In evaluation, it is assumed that the 
equipment model could be appropriately described by a pair of second-order polynomial functions in terms of  
a set of controllable variables. Of practical relevance is to consider a drifting effect in the equipment model since 
in common semiconductor practice the process tends to drift due to machine aging and tool wearing. We select 
a typical application of R2R control to chemical mechanical planarization (CMP) in semiconductor manu-
facturing in this evaluation, and there are five different CMP process scenarios demonstrated, including 
mean shift, variance increase, and IMA disturbances. For the controller, ADROC, an on-line estimation 
technique is implemented in a self-tuning (ST) control manner for the adaptation purpose. Subsequently, an ad 
hoc global optimization algorithm based on the dual response approach, arising from the response surface 
methodology (RSM) literature, is used to seek the optimum recipe within the acceptability region for the 
execution of next run. The main components of ADROC are described and its control performance is assessed. It 
reveals from the evaluation that ADROC can provide excellent control actions for the MIDO R2R situations 
even though the process exhibits complicated, nonlinear interaction effects between control variables, and the 
drifting disturbances. 
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1.  INTRODUCTION 

It is well known from control engineering that the 
goal of an adaptive extremum controller is to seek the 
optimum setting of control variables that keeps the pro-
cess output at the extremum value and then continuously 
fine-tunes the process operating at its optimum despite 
model mismatch and/or the influence of system dynamics 
and noise disturbances. 

In contrast to process monitoring applied in the pha-
se of conventional control charting for the detection and 
thus removal of assignable causes of variation, process 
adjustment is referred to as another variability-reduction 
tool for the process compensation or regulation, also known 
as engineering process control (EPC), where an adjust-
ment to manipulable process variables is made in an at-
tempt to keep the process output as close as possible on 

some target value. One main group of EPC designs 
involves the notion of feedback control, a most recent 
application of which to microelectronics industry leads to 
run-to-run (R2R) control schemes (del Castillo and Hurwitz 
1997) in semiconductor manufacturing. 

Successful implementation of the most popular R2R 
controllers in semiconductor community lies in a funda-
mental assumption that the functional relationship asso-
ciating the compensating (or recipe) variables and process 
output of interest is in the form of linearity (Sachs, Hu 
and Ingolfsson 1995 and Patel and Jenkins 2000). It 
implies that if this assumption holds in general, then 
several complex semiconductor processes can be well 
represented by the transfer function models (Box, Jenkins 
and Reinsel 1994) fitted from experimental data collected 
in a pre-control stage. However, nonlinear effects among 
semiconductor process variables often seem critical; for 
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example, the chemical mechanical planarization (CMP) 
process is a typical case of that kind (del Castillo and Yeh 
1998 and Fan 2000a). If nonlinearities were noticeable, 
the existing R2R regulators (such as EWMA-based con-
trollers) would not be adequate for the control purposes. 
The traditional method of physical principle models is 
ideal for the specific tasks of electronics-model building; 
yet sufficient knowledge of the chemistry, physics and the 
internal dynamics is necessary to build a model (Nanz 
and Camilletti 1995). In semiconductor practice, these 
conditions are rarely completely met or the physical 
models may not even exist. Therefore, if nonlinear com-
plexity can be taken into consideration while designing a 
controller, better control performance can be anticipated 
as compared to the linear ones. The previous statement is 
one of the primary concerns addressed in this research. 

Nearly all the R2R controllers are model-referenced, 
denoting that a model is first envisioned as a base from 
which to devise a controller. In the vast majority of rea-
listic environments, multiple outputs are usually entailed, 
whereas one-attribute-at-a-time control will be a sensible 
choice that is much more likely to be carried out from an 
empirical point of view. In light of these features, a 
multiple-input dual-output (MIDO) R2R optimizing con-
troller for semiconductor manufacture is presented in this 
paper, serving as a supervisory recipe regulator between 
batches (or runs) of silicon wafer production. The propo-
sed controller is dubbed adaptive dual response optimi-
zing controller (ADROC) where a variant of the  
second-order (quadratic) response surface model (Myers 
and Montgomery 2002) is adopted and an optimization 
algorithm is then developed to anchor an optimum “setpoint” 
of control variables for a subsequent run. In essence, 
ADROC follows the concept of “self-optimizing control” 
(or called “adaptive extremum control”), as will be seen 
shortly. For its details, see Golden and Ydstie (1989). 

The rest of this paper is laid out as follows. Section 2 
describes the ingredients of ADROC, separating into 
subsections of model building, optimization algorithm, 
control model description, and on-line estimation. Several 
important implementation issues and the system archi-
tecture of ADROC along with a block diagram are sum-
marized in Section 3. Section 4 is devoted to a series of 
simulation studies (based upon an advanced polishing 
process drawn from the semiconductor industry), which 
illustrate the ADROC’s behavior in typical experimental 
situations. There, the computational results of related 
performance measures are reported as well. Conclusions 
are drawn in Section 5 with some remarks of areas for 
further research. 

2.  COMPONENTS OF ADROC 

For the extremum seeking functionality, an ad hoc 
constrained quadratic programming algorithm, suitable 

for solving the dual response systems (DRS) arising from 
response surface methodology (RSM, see, e.g., Khuri and 
Cornell 1996 and Myers and Montgomery 2002), is 
utilized to calculate the recipe from run to run. For the 
adaptation mechanism, a generalized multivariate recur-
sive least squares (RLS) algorithm is utilized for the   
on-line estimation. To be discussed next is the process 
model considered in this study. 

2.1  Process Model Description 

Myers and Carter (1973) develop a useful methodo-
logy termed “dual response approach” in the case of two 
responses of interest. It is also assumed that the process 
engineer can clearly categorize these two responses by 
their importance as the “primary” and “secondary” 
response variables. The goal is to seek the optimum 
condition * * * *

1 2, , , kµ µ µ… ′= ⎡ ⎤⎣ ⎦µ  on the k control variables 
that optimizes the primary response while keeping the 
secondary response on the target value, as defined by 
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where ˆ
py  is the fitted quadratic primary response function, 

ˆ
s

y  is the fitted quadratic secondary response function, 

and T  is the target value for ˆ
s

y . Henceforth, the 
subscripts/superscripts p  and s  denote primary and 
seconddary, respectively. In the regression functions ˆ
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Note that the matrices pB  and sB  are symmetric. For 
the inequality constraint in equation (1), ρ  is the radius 
used to restrict the search on the variables µ  inside the 
spherical experimental region where the responses were 
fitted. 

Here, we call model (1) as the “dual response 
systems (DRS).” Partly motivated by the ridge analysis 
procedure developed by Draper (1963), the dual response 
approach introduced by Myers and Carter (1973) is a 
contour-based approach, which, essentially, is constructed 
based on the Lagrange method in the context of con-
strained optimization from nonlinear programming (NLP). 
Like ridge analysis, the dual response approach produces 
a locus of coordinates of control variables where various 
values of the predicted secondary response function ˆ

s
y  

are considered. 

2.2  Constrained Nonlinear Optimization 

Assuming a suitable constraint qualification (i.e., the 
gradient of the binding constraints are linearly indepen-
dent (see, e.g., Luenberger 1984)), a necessary condition 
for local optimality of a feasible point µ  is the existence 
of Lagrange multipliers µ ,θ such that 

( ) ( )1

2p s s p
µ θB B I− + = −µ µβ β          (2) 

where , µ  θ additionally satisfy 0θ ≥ whenever 2ρ′ <µ µ . 
If the matrix ( )

p s
µ θB B I− +  is positive definite, then it 

can be shown that µ  is a global optimum for (1) (Fan 
2000b). The latter result suggests taking values for 
µ , θ that ensure the matrix ( )p sµ θB B I− +  positive 
definite. This technique was recommended as part 
contour-based method in Myers and Cater (1973), and 
later developed into a formal algorithm, DRSALG 
(Semple 1997). 

2.2.1  DRSALG 

DRSALG was designed to search the (convex) 
region Γ  define by 

( ) ( ){ }: is positive definite, 0.p sΓ µ, θ µ θ θB B I= − + ≥  (3) 

for values of , µ  θ  that make the µ  obtained from (2) 
feasible in (1). If µ  is fixed, then a related and easier 
problem is to determine values for θ  and µ  that solve 
the parametric trust region subproblem 
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(4) has a stationary equation identical to (2), but now the 
stationary solution µ  is only required to satisfy the 
radial inequality. The sole Lagrange multiplier, 0θ ≥ , 
corresponds to this inequality and must additionally 
satisfy ( )2 0θ ρ′⋅ − =µ µ  and make ( )p sµ θB B I− +  
positive semidefinite at a global optimum (see, e.g., Moré 
and Sorensen 1983). If ( )p sµ θB B I− +  is positive de-

finite, then the solution to (4), denoted by ( )* µµ , is the 

unique global optimum to (4). Observe that ( )* µµ  will 

not, in general, be feasible for (1), i.e., ( )( )ˆ 0*

sy Tµ − ≠µ . 

However, should µ  be determined such that ( )( )ˆ *

sy µµ  

0T− = , then ( )* µµ  solves (1) as well. Calculating µ  

so that ( )( )ˆ 0*

sy Tµ − =µ  can be accomplished when-

ever the function ( )( )ˆ *

sy µµ  is continuous on some 

interval [ ],a b  with ( )( ) ( )( )ˆ ˆ* *

s s
y a T y b< <µ µ . Continuity, 

in turn, hinges on the eigenstructure of the matrix 
( )p sµB B− . If the eigenvalues of this matrix are ordered 

1 2 nλ λ λ…≤ ≤ ≤  (where the dependence on µ  has been 
suppressed for notational simplicity), then it can be 
shown that ( )( )ˆ *

sy µµ  is continuous on [ ],a b  pro-

vided ( )
s p

µ −β β  is never perpendicular to the first 

eigenspace define by 
1

µΕ =  ( ){ }
1

: 
p s

q µ λB B q q− =  on this 
interval (see, e.g., Semple 1997), where the eigenvector 
q  associated with the smalllest eigenvalue 1λ  of  
( )

p d s
µB B− . 
DRSALG algorithm guarantees global optimal solu-

tions for nondegenerate dual response problems. However, 
even the majority of dual response problems are non-
degenerate, the degenerate problems can occur and 
cannot be solved by DRSALG. del Castillo, Fan and 
Semple (1999) devised a generalized algorithm, called 
DR2, that computes global optimal solutions for non-
degenerate problems and approximate global optimal 
solutions for degenerate problems. 

2.2.2  DR2 

In order to solve the degenerate case, a single   
axis-henceforth termed the grid axis-is selected. The 
variable associated with this axis will be termed the grid 
variable. Values of the grid variable are restricted to the 
interval [ ],ρ ρ− . Since 2ρ  is bounded by n  in dual 
response optimization problems, this interval is relatively 
narrow. The interval [ ],−ρ ρ  along the grid axis can 
then be divided into regular subintervals. Each interstitial 
point-henceforth termed the grid point-represents a value 
where the grid variable will be temporarily fixed. When 
the grid variable is fixed at a grid point, a subproblem of 
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the form (1) having 1n −  process variables is created. 
New matrices and vectors, each deflated by one 
dimension and adjusted to account for the fixed grid 
variable, replace the old values for ˆ

pβ , ˆ
sβ , ˆ

pB , and ˆ
sB  

in (1). The values of 2ρ , ˆ
pβ , and ˆ

sβ  require similar 
adjustments. Each 1n −  dimensional subproblem is 
solved, and the best solution found among the 
subproblems is recorded. If desired, the grid can be 
refined locally around the best solution found to improve 
accuracy. Since degeneracy indicates ( ) 1

d

d s p

µµ − ⊥β β Ε , 

thus the original axes, say * * * * * *

1 2 3 4, , ,, , kµ µ µ µ µ… ′= ⎡ ⎤⎣ ⎦µ , 
are rotated so that the eigen-vector 1q  associated with 
the smallest eigenvalue 1λ  of ( )p d sµB B−  becomes the 
first axis 1z  in the new coor-dinate system based on the 
orthonormal basis 1 2[Q q q= ]kq . Herein, 1q  can 
be quickly computed via a few steps of Inverse Iteration. 
Then, Q  can be formed by utilizing the Gram-Schmidt 
orthogonalization procedure (see, e.g., Golub and van 
Loan 1984). By the rotational transformation via Qz=µ  
illustrated in figure 1, (1) becomes 
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where p pQ′ ′=β β , p pB Q B Q′= , s sQ′ ′=β β , and s sB Q B Q′= . 
The radial constraint does not change in the new      
z -coordinates because Q  is orthonormal ( Q Q I′ = ). 

 

1µ

2µ

1 1=z q
2z

      is the direction
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Figure 1. The Rotation Procedure 

 
Degeneracy results from orthogonality on the direc-

tion of 1q , so removing 1z 's effect from (5) can 
effectively rectify this computational difficulty around 

dµ . Consequently, 1z  is selected as the grid variable; 
namely, 1z  satisfies 1ρ ρz− ≤ ≤  and this interval can 
be equally divided into many subintervals by many grid 
points (illustrated in figure 2). If 1z  is, in turn, fixed at 
each grid point, then (5) is decomposed into a series of 

DR subproblems having ( )1k −  control factors. New 
matrices, vectors, intercepts, and radii need adjustments 
to account for the fixed grid variable. Each subproblem 
with lower dimensions is created and swiftly solved by 
DRSALG, and the best solution found among the sub-
problems is earmarked. 

In order to increase accuracy, a new working (or 
bracketing) interval for 1z  is constructed by two grid 
points adjacent to the best solution obtained in the first 
pass of grid search. Then, the best solution found in the 
second pass (local refinement) can be transformed back to 
the original variables through Qz=µ . 

DR2 will find global optimal solutions of the 
nondegenerate DR problems by calling DRSALG as a 
subroutine, and will use the procedures aforementioned to 
return an approximate global optimal solution (due to the 
computational accuracy dictated by the mesh used in the 
grid search) in degenerate cases. While solving too many 
subproblems would appear to compromise the speed of 
the procedure, it has been found that this is not the case in 
practice. First, many of the subproblems are infeasible, 
and these are screened quickly and discarded in the initial 
phase of DRSALG. Second, if the grid axis is constructed 
carefully, the majority of subproblems will be nondegenerate, 
and convergence will be quite swift. 

In contrast to DRSALG for nondegenerate problem, 
it is impossible to claim that grid point procedure (del 
Castillo, Fan and Semple 1999) will produce an exact 
global optimal solution for degenerate problems. However, 
since the grid method surveys as much of the feasible 
region as possible, it is reasonable to expect a more 
accurate approximation to the global optimum than would 
be obtained using a local search procedure. Since each 
nondegenerate problem is actually solved in the initial 
phase as screen for degeneracy, the implementation is 
already a comprehensive solver for general quadratic dual 
response systems. For each nondegenerate problem, the 
DR2 solution satisfies the sufficient conditions for global 
optimality. For degeneracy case, the fact that DR2 lacks 
of speed on this type of problems is not surprising giving 
the sheer number of subproblems that are solved. 
Fortunately, nondegenerate problems occur quite fre-
quently in common practice. 

 

2z

1zρ+ρ−

Best Solution
Found

Grid
Points

 
Figure 2. Grid Point Search in the Direction 1z  
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2.3  Control Model Description 

Most of the results available on extremum control 
deem an engineering process (or scientific system) as a 
static map, and the static input-output response surface at 
each discrete time period is nonlinear in nature. In modelbased 
optimization control schemes, the uncertainties existing in 
the input-output mapping make it necessary to use some 
sort of “adaptation” to determine the unknown parameters 
of the referenced model, and then on-line identification 
techniques such as the recursive least squares (RLS) apply. 
Invoking the certainty equivalence principle in the control 
literature, a specific optimization algorithm is provided to 
find the best operating point of a process. 

2.3.1  Multiple-Input Dual-Output Control Model 

To lend the static DRS itself to an R2R formulation, 
now we consider the MIDO system at discrete time t , as 
defined by 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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          1 1 ,
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Β
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′= + −

′+ − − +
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        (6) 

where ( )py t and ( )sy t denote the “actual” primary outputs 
and secondary outputs at time t ; ( )p tη  and ( )s tη  de-
note the process disturbances and/or model misspeci-
fications at time t  unaccounted for by using the qua-
dratic primary- and secondary-process functions. As can 
clearly be seen from (6), the process outputs produced at 
time t  are subject to the recipe of previous run (i.e., 

( )1t −µ ), showing time lag 1 in a feedback control sense. 
This is a typical EPC convention applied in R2R 
applications-a “dead-beat” control policy. Thus, EPC 
practitioner may view R2R control as a supervisory 
controller that purely adjusts the set-point of the machine 
tool controller in trying to bring the process output back 
to target from run to run. Note that, in semiconductor 
manufacturing, a run (or batch) is referred to a specific 
process, which deals with a single wafer, a single “lot” of 
wafers (typically 25 wafers in cassette), or several lots at 
once. If the DRS as in (1) is assumed adequate to describe 
the process, the computation of recipe update between 
runs is equivalent to solving the following constrained 
quadratic programming problem: 
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where , 1|ˆ p t ty +  and , 1|ˆs t ty +  indicate the predicted process 

models, for the next discrete time 1t + , built upon the 
control outputs up to time t ; ( )tµ  is the computed set-
point at time t  and will serve as the recipe of running 
the next batch at time 1t + . The radius ρ  in the in-
equality constraint can be considered as the allowable 
adjustment range pre-specified by the control engineer, 
which is sometimes subject to the practical limitation of 
equipment setting. 

The concept of adaptive extremum control is essen-
tially related to optimization techniques, many of which 
have been transferred from numerical optimization. In 
this study, we use the Dual Response II (DR2) algorithm 
presented in Fan (2000b) to solve the optimization 
problem in (7). DR2 solves the DRS by two different 
ways. If the DRS is a nondegenerate case, then the 
algorithm DRSALG (Semple 1997) directly solves the 
problem and guarantees a unique “global” solution. If the 
DRS is detected to be numerically degenerate, then the 
procedure AXIS rotates a degenerate problem and then 
decomposes it into a finite sequence of non-degenerate 
sub-problems of lower dimension. The non-degenerate 
subproblems are solved by DRSALG. The simulation 
analysis reveals that, for degenerate cases, DR2 obtains 
the global solution over 98% of the time. Computational 
results based on large simulations also show that DR2 is 
more effective at locating global (or near-global) solu-
tions for the DRS than several optimization algorithms 
(such as the Generalized Reduced Gradient (GRG) 
algorithm and the Sequential Quadratic Programming 
(SQP) algorithm) that have been frequently used in RSM 
applications. The algorithms DRSALG and DR2 involve 
a great deal of algebraic mathematics and optimization 
methodology. For detailed discussion, interested readers 
can refer to Semple (1997) for DRSALG, and to del 
Castillo, Fan and Semple (1999) and Fan (2000b) for 
DR2. 

2.4  On-Line Estimation Technique 

The self-tuning (ST) control system, based upon an 
idea of separating the parameter estimation from the 
controller design tasks (known as the “separation theo-
rem” in the classical control theory), has been widely 
applied (see, e.g., Åström and Wittenmark 1973, and 
Seborg et al. 1986). The distinctive characteristic of com-
bining a recursive estimation algorithm with a controller 
synthesis is due to its suitability for processes that vary 
with time. That is, the process under investigation can be 
assumed to have time-varying process parameters or has 
constant but initially unknown process parameters, mean-
ing that ST mechanism might be advantageous for 
discrete-part manufacturing (DPM). Then, the control 
func-tion uses these estimates as if they were “true” in the 
referenced model, called the certainty equivalence prin-
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ciple. There have various controller design strategies involved 
in the controller synthesis stage, such as minimum-
variance (MV), moving-average (MA), pole-placement, 
LQG, etc. However, extremum-seeking methods are still 
of great practical interest since even small improvement 
in the performance function can possibly result in large 
savings in manufacturing cost. In addition, recent 
development in computers has led to a rejuvenated at-
tention in extremum-seeking method combined with 
adaptive control (Åström and Wittenmark 1995). 

At the core of ST algorithms is the recursive 
estimation method. The assumed model is linear in para-
meter; therefore, the ordinary recursive least squares 
(RLS) algorithm will be adequate for this estimation 
situation. As a result, the input data in the TR-algorithm 
should be replaced with ˆ

p,tβ , ˆ
s,tβ , ˆ

p,tβ , ˆ
s,tβ , ˆ

p,tB , and 
ˆ

s,tB , denoting their LS estimates at iteration t . Herein, a 
clear-cut scheme is opted, which estimates the parameters 
in the model and then these estimates are indirectly used 
for function optimization, therefore leading to the so-
called indirect (or explicit) self-tuning control (Åström 
and Wittenmark 1995). To prevent an abrupt deterioration 
of estimation performance due to the “parameter windup” 
phenomenon, an RLS with constant trace (Shah and 
Cluett 1991) is employed and its formal procedure with 
respect to (7) is expressed shortly. 

In a sense of feedback control, the predicted function 
for (7) can be expressed by a simplified general linear 
model (GLM) of 1

ˆˆ
p,t t ty a −

′= µ  and 1
ˆˆ

s,t t ty b −
′= µ , where 

ˆ
ta  is a ( )2 3 2 2 1n n /+ + ×⎡ ⎤⎣ ⎦  vector, which contains the 

parameter estimates ˆ
p,tβ , ˆ

p,tβ  and ˆ
p,tB ; ˆ

tb′  is also a 

( )2 3 2 2 1n n /+ + ×⎡ ⎤⎣ ⎦  vector, which contains the parame-

ter estimates ˆ
s,tβ , ˆ

s,tβ  and ˆ
s,tB  at discrete time t , if 

the full quadratic model is considered. The RLS algori-
thm with constant trace can thus be formulated as follows: 

 
Initialization: Let 1t =  and ( )2 3 2 2n n / p+ + = . 

Let 0µ  be the initial recipe at time 0, 0P  an initial 
matrix and λ  the constant of discounting factor. 
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′= + − µ ; 

( )1 1 1
ˆ ˆ ˆ

t t t s,t t tyb b K b
− − −

′= + − µ ; 

3) 
( ) ( )

1 1 1 1p t t t p t t t

t

pλ

I K P I K P
P

− − − −
′ ′−

= +
µ µ

; 

4) : 1t t= +  and go to (1); end. 
In the foregoing algorithm, the discounting factor λ  

with a value less than 1.0 is very useful for tracking the 
parameters in time-varying systems and during the initial 
transient phase of self-tuning. The usual range of λ  is 
set between 0.95 and 1.0. tK  is a 1p ×  vector of 
weights and tP  is a p p×  matrix proportional to the 
variance-covariance matrix of the parameter estimates. 
Measurements of a performance function in extremum 
control are typically noise-corrupted. It is then necessary 
to compensate for the influence of the noise. Thus, the 
intrinsic noise-resistant features of ST are of great value 
in the concept of an ST extremum controller addressed in 
this study. 

3.  ADROC Algorithm 

The preceding subsection has examined all the 
components of adaptive dual response optimizing con-
troller (ADROC). The aim of the ADROC that follows is 
to use a straightforward idea from dual response ap-
plications and then match parameterized input-output data 
to the approximate representation given by (7). The 
matching process proceeds in a manner to construct a 
well-behaved, “adaptive” extremum objective function 
(via recursive estimation) that accurately represents the 
nonlinearities of the process locally about the current 
operating conditions. Subsequently, an optimization step 
based on the TR-based (or dual-response) approach is 
carried out so as to try to achieve the eventual goal of 
extremum control. For illustration, the block diagram of 
the ADROC in an R2R control simulation scheme is 
demonstrated in figure 3. 

For the clarity of presentation, the flow of the 
ADROC algorithm is summarized as follows: 
 
(i)  Provide the quadratic model in (7) with a set of 

initial parameter estimates from an off-line design of 
experiments; that is, 0

ˆ
p,β , 0

ˆ
s,β , 0

ˆ
p,β , 0

ˆ
s,β , p,0B̂ , 

and 0
ˆ

s,B , and compute the initial bounds on the 
Lagrange multiplier µ  via computation of three 
TR subpro-blems. Start the time index with 0t = . 

(ii) If the DRS is found degenerate, then use AXIS 
algorithm to decompose and solve every DRS sub-
problems with lower dimension. Provide the recipe 

tµ  to the R2R system and go to step (iv). Otherwise, 
for the nondegenerate case go directly to step (iii). 

(iii) Compute the recipe tµ  via the DRSALG algorithm. 
(iv) Set : 1t t= + . Evaluate the “actual” performance (or 

objective) function values ( )( )p ty µµ and ( )( )s ty µµ  
from the true process or plant. 

(v) Calculate the updated parameter estimates ( ˆ
p,tβ , ˆ

s,tβ , 
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ˆ
p,tβ , ˆ

s,tβ , p,tB̂ , and ˆ
s,tB ) through the estimation 

algorithm. 
(vi) Form an updated, predicted response function 

( )( )1
ˆ

p ty µ
+

µ  and ( )( )1
ˆ

s ty µ
+

µ  using the results 
obtained from step (v). 

(vii) Return to step (ii) and then compute the incumbent 
recipe tµ  via the optimization algorithm for the 
next control step at 1t + . 
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Figure 3. Block Diagram of the ADROC 

4.  EXPERIMENTAL STUDY OF ADROC 
BASED ON REAL EQUIPMENT MODELS 

In order to investigate the performance of the ADROC, 
a CMP process was adopted. The chemical mechanical 
planarization (CMP) process is a typical R2R control 
situation in semiconductor manufacturing. Most CMP 
applications consider two critical, possibly “conflicting” 
quality characteristics; one of them is removal rate (RR) 
of silicon oxide and the other is within-wafer non-
uniformity (WIWNU) on the wafer surface after polishing. 
CMP process in practice has been expected to reach 
around a specific removal rate and also to accomplish as 
minimum WIWNU as possible, leading to the multiple-
input dual-output (MIDO) optimization case. Due to this 
particular model configuration, the new optimizing con-
troller, termed ADROC, integrating the dual response 
systems with on-line estimations technique can be a 
perfect fit to these MIDO R2R control scenarios. 

4.1  CMP Process Model 

The simulated CMP process is based on the 
equipment models given by del Castillo and Yeh (1998). 
Control variables (scaled in the ( )1, 1−  coding convention) 
consist of platen speed ( 1µ ), back pressure ( 2µ ), 
polishing downforce ( 3µ ), and the profile of the con-

ditioning system ( 4µ ). Each factor is constrained to inside 
the ( )1, 1−  range. The two responses of interest are 
within-wafer nonuniformity (WIWNU) and removal rate 
(RR). The primary performance function of interest is 
WIWNU, denoted by py , and the secondary perfor-
mance function of interest is RR, denote by sy . In the 
simulation of the 4 2×  CMP process, a target value of 
1730 was set for sy  and py  was to be minimized. The 
time variable t  indicates the number of silicon wafers 
that have already been polished by the polish pad 
currently mounted. In this zoom CMP practice, the 
process constraints were considered adequate to be 

1700sy > , 200py < , and 1 1iµ− ≤ ≤ for 1, 2, , 4.i =   
The simulated equipment models (treated as the true 
production system) are given by 

1 2 3

4 1 2 4

1

254 32 6 113 2 32 6

       37 1 36 8 57 3
       2 42 ,

p

,t

y . . .

. . . t
. t

µ µ µ

µ µ µ µ
ε

= + + +

+ − + ′
′− +

            (8) 

1 2 3 4

2 2 2
1 2 1 2 3

2
1 4 2

1563 5 159 3 38 2 178 9 24 9

       67 2 46 2 19 2 28 9

       12 116 50 4 20 4 ,

s

,t

y . . . . .

. . . .

t t . t . t

µ µ µ µ

µ µ µ µ µ

µ µ ε

= + − + +

− − − −

′ ′ ′ ′− + − + +

 (9) 

where ( ) [ ]53 52 1, 1t t /′ = − ∈ − + , implying that the age of 
the polishing pad range from 1 to 105, and afterwards a 
new pad is switched on. It needs to reset the scaled time 
variable t′  once the first 105 wafers polishing would 
have been done. The random error term 1,tε  for the 
primary response is assumed a white series to obey 

( )20 30N , , and the random error term 2 ,tε  for the se-

condary response follows ( )20 60N , , both estimated 
from the mean squared error (MSE) of the raw data. The 
deterministic drift is 2.42t′−  for py  and 50.4t′−  for 

sy . From (8-9), we note that the models are considerably 
more complex than quadratic approximations since the 
t′  variable appears in quadratic and 2-factor interaction 
terms. Equations (8-9) are simulated under 5 different 
scenarios and the overall simulation results are tabulated 
in Tables 1-5, respectively. 

4.2  Simulated 4 2×  CMP Process 

To begin with experimental studies, 50 independent 
simulations of 200 wafers (batch) each were run for 
collecting the computational results. The performance 
measures utilized herein contain the averages and standard 
deviations of the open-loop and closed-loop perfor-mance 
function values ( openy , closedy , openS , closedS ), and the 
average and standard deviation of the ith controllable variable 
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( iµ , 
i

Sµ ). Besides, the standard errors of all the 

evaluation statistics were also assessed. In addition, the 
RLS method with the constant trace algorithm is applied 
with a fixed discounting factor 1 0.λ =  and 0P I=  in 
the estimation block (see figure 3). Note that the CMP 
models are simulated under five different scenarios: (1) 
approximate initial models given and quadratic models 
selected, (2) Over-estimation in parameters of initial 
models, (3) Under-estimation in parameters of initial 
models, (4) under the presence of variance increase, (5) 
under in the presence of IMA(1, 1) disturbance. 

 
Scenario 1:Approximate initial models given 

To provide initial models, sy  was modeled by a full 
quadratic polynomial plus drift and py  by a model with 
linear terms and 2-factor interactions plus drift. The initial 
models (see, e.g., del Castillo and Yeh 1998) were 
specified as follows: 

1 2 3

4 1 2

250 30 100 20

       35 30 0 05 ,
py

. t

µ µ µ

µ µ µ

= + + +

+ − +
           (10) 

1

1 2 3

4 2

2 2
1 2

2
3           

1600 150 40 180

25 60 3      0 20

25 0 9 ,

sy

. t

µ µ µ

µ µ µ µ µ

µ

= + − +

+ −− −

− −

         (11) 

which illustrate the case where reasonable initial models 
are provided to start the ADROC. The equality constraints 
on the outputs together with strict target values are useful 
in this example as removal rate is usually a “closer-the-
better” response and nonuniformity a “smaller-the-better” 
response. 

For illustration, a simulation of 200 wafers is 
pictorially demonstrated in figure 4, including both the 
closed-loop and open-loop control outputs. In lower part 
of figure 4, it was found that the closed-loop control 
outputs by the ADROC satisfy both process output 
constraints ( 1700sy > , 200py <  as before) but the open-
loop control outputs cannot meet these requirements (see 
also table 1). The upper part of figure 4 presented all four 
controllable variables of the closed-loop in this scenario. 
Obviously, the ADROC is able to keep all control 
variables inside the constraint 1 1iµ− ≤ ≤ . 

In table 1, there show two groups of control outputs: 

open-loop and closed-loop (ADORC). For every group, 
the averages of py , sy , 

pyS  and 
s

yS  were computed 
based on the 50 independent runs. Note that the standard 
errors of each evaluation statistic are indicated in 
parenthesis. From table 1 and figure 4, simulation results 
of the closed-loop on both responses are better than those 
of the open-loop. For the ADROC, though the target 
(1730) of removal rate is not attainable, however, the 
recipes generated by ADROC are still able to produce 
much smaller control outputs on nonuniformity (than the 
open-loop strategy) and keep removal rate as close as 
possible to the target (see figure 4). 

The control outputs of the fix-recipe-loop were 
obtained by only using single fixed-recipe computed from 
the initial model. Notice that the control outputs of the 
fixed-recipe-loop are still within acceptable ranges even 
though the average of standard deviation of the secondary 
response (74.3084) is higher than that of the closed-loop 
(62.6662). Nonetheless, the fix-recipe-loop control 
strategy depends strongly on the accuracy of the initial 
model built upon an earlier off-line experiment. We will 
discuss this issue in next two scenarios. 

 
Scenario 2: Over-estimation parameters of initial models 

For the moment, we allow 0% ~ 20% over estimation 
error in each parameter of the initial model; namely, the 
magnitude of every parameter in this scenario will be 
increased by 0% ~ 20% units (which was sampled from a 
uniform random number). 

It was particularly pointed out from Table 2 that 
ADROC can still produce satisfactory control outputs 
even if the bias error of initial models is present, but the 
control outputs of the fixed-recipe-loop, especially on 
removal rate (where the average of sy  is 1485.8319 and 
the stand error of sy  is 76.3905), were deteriorated 
resulting from a poor initial model. Note that even though 
the fixed-recipe-loop can achieve a lower level of the 
average of py  (122.9123), however, the standard errors 
of py  and sy  are the way much greater than these by 
ADROC (5.9482 and 7.0148, respectively). It clearly 
indicates the robustness and control stability delivered by 
ADROC for this scenario. With respect to the open-loop 
outcomes, both average of py  and sy  are not even 
acceptable to the process requirements. 

Table 1. Simulation Results of 4 2×  CMP Process: Scenario 1 

Scenario 1 py  
pyS  

sy  
syS  

1µ  2µ  3µ  4µ  

ADROC 190.8161 
(5.4463) 

36.9546 
(3.7859) 

1714.0281 
(3.8149) 

62.6662 
(3.4609) 

0.2988 
(0.0267)

-0.8101 
(0.0276) 

0.4112 
(0.0208) 

-0.1546 
(0.0491)

Fix-recipe-loop 178.3741 
(1.8245) 

31.3461 
(1.4366) 

1701.1761 
(4.2085) 

74.3084 
(3.8766) 

0.2600 
(0) 

-0.8650 
(0) 

0.3803 
(0) 

-0.1983 
(0) 

Open-loop 254.4501 
(1.8245) 

30.338270 
(1.3884) 

1570.0298 
(4.2085) 

66.413206
(3.7283) ⎯ ⎯ ⎯ ⎯ 
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Figure 4. Single 200-Wafer Realization of 4 2× CMP Process under Scenario 1 

Figure 5. Single 200-Wafer Realization of 4 2× CMP Process under Scenario 2 
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Scenario 3: Under-estimation parameters of initial models 
In a similar way, we allow 0% ~ 20% under estima-

tion error in each parameter of the initial model. The 
magnitude of every parameter in this scenario will be 
decreased by 0% ~ 20% units (which was also sampled 
from a uniform random number as before). It can be seen 
from Table 3, ADROC can still generate the primary 
response of the closed-loop under 200 level, and which 
satisfy process constraint 200py < . On the contrary, the 
average of WIWNU ( py ) of the fixed-recipe-loop is too 

high (263.0668) to be acceptable. Overall, among these 
three control strategies, ADROC still performed best from 
every statistic. 

According to the discussions presented in scenarios 
2 and 3, ADROC can generally provide an optimal, at 
least practically feasible, recipe from run to run and ap-
propriate control outputs adaptable in changing conditions, 
even though the initial models suffered bias errors that the 
fix-recipe-loop control strategy can not cope with. 

Scenario 4: Performance in the presence of variance increase 
In this scenario, the same initial models (10-11) are 

provided to ADROC. A moderate variance increase of 
magnitude 40 is added to sy  at time 20 and a second 
variance increase of magnitude 10 is added to py  at time 
30. Figure 7 shows the control outputs of ADROC and 
closed-loop for a single 200-wafer realization. As indi-
cated from lower part of Figure 7 (see also 

syS  in Table 

4), there exhibits larger deviation (or fluctuation) of RR 
from target since time 20. Even so, ADROC is still able to 
control both process outputs comparably well. 

Table 4 presents the comparison results of ADROC 
and open-loop computed over 50 independent simulations. 
In sum, the open-loop performance is absolutely imprac-
tical ( 254py ≈ , 1572sy ≈ ), but, by contrast, the closed-
loop strategy by ADROC yields acceptable control out-
puts on both responses as the process variance inflates. In 
sum, ADROC brings WIWNU further down to 190 while 
controlling the RR response very well ( 1710sy ≈ ). 

Table 2. Simulation Results of 4 2×  CMP Process: Scenario 2 

Scenario 2 py  
pyS  

sy  
syS  

1µ  2µ  3µ  4µ  

ADROC 187.7606 
(5.9482) 

41.2711 
(5.2849)

1697.6627
(7.0148)

64.4344
(3.8337)

0.2631
(0.1906)

-0.7993
(0.1440)

0.3436 
(0.1365) 

-0.1532
(0.1546)

Fix-recipe-loop 122.9123 
(12.6249) 

31.4092 
(1.0880)

1485.8319
(76.3905)

73.8516
(3.8255)

-0.1841
(0.1852)

-0.9356
(0.1523)

-0.0154 
(0.1127) 

-0.3006
(0.1733)

Open-loop 254.4537 
(1.5328) 

29.8592 
(1.1466)

1572.5270
(3.7557)

65.9551
(3.9166) ⎯ ⎯ ⎯ ⎯ 

 
Table 3. Simulation Results of 4 2×  CMP Process: Scenario 3 

Scenario 3 py  
pyS  

sy  
syS  

1µ  2µ  3µ  4µ  

ADROC 192.7480 
(5.9555) 

36.4703
(3.2342)

1714.4090
(5.5249)

67.1745
(4.6031)

0.2883
(0.1474)

-0.7864
(0.1217)

0.4301 
(0.1194) 

-0.1409
(0.1293)

Fix-recipe-loop 263.0668 
(24.8988) 

30.3851
(1.4596)

1784.0845
(17.9392)

66.4410
(4.5661)

0.6417
(0.1098)

-0.3376
(0.1452)

0.6787 
(0.1523) 

0.1158 
(0.1359)

Open-loop 254.4968 
(1.8433) 

30.3228
(1.5086)

1571.7618
(3.9597)

66.9126
(3.8906) ⎯ ⎯ ⎯ ⎯ 

 
Table 4. Simulation Results of 4 2×  CMP Process: Scenario 4 

Scenario 4 py  
pyS  

sy  
syS  

1µ  2µ  3µ  4µ  

ADROC 190.4475 
(9.9386) 

44.5329
(7.1375)

1710.1592
(5.0959)

95.1914
(6.3974)

0.2828
(0.1500)

-0.7956
(0.1361)

0.3976 
(0.1273) 

-0.1615
(0.1265)

Fix-recipe-loop 178.7326 
(2.5281) 

37.9778
(1.8635)

1704.5772
(6.6973)

101.2771
(6.6228)

0.2600
(0) 

-0.8650
(0) 

0.3803 
(0) 

-0.1983
(0) 

Open-loop 254.3438 
(2.5281) 

37.288406
(1.8534)

1572.3625
(6.6973)

96.081984
(6.4204) ⎯ ⎯ ⎯ ⎯ 
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Figure 6. Single 200-Wafer Realization of 4 2× CMP Process under Scenario 3 

 

 
Figure 7. Single 200-Wafer Realization of 4 2× CMP Process under Scenario 4 
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Scenario 5: Performance in the presence of IMA disturbance 
Again, initial models (10-11) are provided to ADROC, 

and an IMA(1, 1) disturbance is considered. 
The IMA(1, 1) disturbance, denoted by ( )D t , for 

two responses obeys the form of 

( ) ( ) 11p p,t p,tD t η θB η −= − +              (12) 

( ) ( ) 11s s,t s,tD t η θB η −= − +               (13) 

where 0 70.θ = , 2(0,  1 )p,tη ~ N  and 2(0,  2 )s,tη ~ N  are 
assumed. In common R2R practice, an IMA series is 
usually used to model machine aging and tool wearing. 
With this CMP process configuration, Figure 8 shows the 
control outputs of open-loop and ADROC for a single 
200-wafer simulation. Evidently, the closed-loop per-
formance is the way better than open-loop on secondary 
process response. As can be seen from Figure 8, ADROC 

generates extremely steady control outputs on RR res-
ponse, meaning that the drifting process of IMA model 
can be compensated for effectively on secondary response. 
The ADROC results exhibit additional merits of having 
high stability on the recipe profile of 1 4~µ µ , even if it 
returns the average mean response and standard deviation 
of WIWNU a little inferior to those of the fix-recipe-loop 
( 194py ≈ , 27.7

pyS ≈ ). 

5.  Conclusions and Further Research 

This paper provided an evaluation of a new multiple-
input double-output controller for CMP process in semi-
conductor manufacturing. This controller, termed ADROC, 
is founded mainly on the theory of adaptive extremum 
control. In the ADROC, a global optimization algorithm 

 

Figure 8. Single 200-Wafer Realization of 4 2×  CMP Process under Scenario 5 
 
Table 5. Simulation Results of 4 2× CMP Process: Scenario 5 

Scenario 5 py  
pyS  

sy  
syS  

1µ  2µ  3µ  4µ  

ADROC 194.7876 
(9.3949) 

27.7284 
(9.3386) 

1721.0368
(2.8759) 

15.3202
(2.0253)

0.3012 
(0.1437)

-0.7930 
(0.1376) 

0.4341 
(0.1251) 

-0.1098 
(0.1169)

Fix-recipe-loop 177.3440 
(4.8239) 

10.3211 
(3.5529) 

1702.3081
(8.8523) 

47.2430
(5.6744)

0.2600 
(0) 

-0.8650 
(0) 

0.3803 
(0) 

-0.1983 
(0) 

Open-loop 252.9552 
(4.8239) 

6.769904 
(3.4626) 

1570.0934
(8.8523) 

33.646803
(5.7078) ⎯ ⎯ ⎯ ⎯ 
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based on theories of dual response systems was employed 
serving as an extremum-seeking controller and the RLS 
method with the constant trace algorithm was utilized 
acting as an estimation self-tuner in the closed-loop 
structure. Thus, the R2R controller can act both as a 
controller and as an optimizer. Treating equipment 
models built upon the real data as real production control 
systems, a CMP process was simulated to illustrate the 
performance of the proposed controller in typical experi-
mental R2R circumstances. The findings of this research 
can be summarized as follows: 

 
• A R2R controller based on a model of dual response 

systems was able to control nonlinear MIDO process 
through the approximation of the nonlinearity with 
quadratic polynomial in terms of input variables. 

• ADROC could rapidly achieve the extremum of con-
trolled outputs nearly without transients and thereafter 
kept consistent control results by using continuously 
updated quadratic models. It indicates the merit that the 
control knowledge addressed in this research is familiar 
to applied statisticians and quality engineers, as quad-
ratic approximations are common in the area of res-
ponse surface methodology and on-line quality control. 

• Multivariate adaptive control has been shown to be a 
feasible control strategy in run-to-run problem due to 
its on-line estimation nature. This allows not only the 
control of some equipment based on given models 
developed previously, but also the optimization of the 
equipment as well. 

• It was observed that the better the initial models pro-
vided to the ADROC algorithm, the better the control 
output and the less severe the transient effect is. But, 
the ADROC can allow the initial models parameters 
20% deviation (estimation error) from the true process 
model such that ADROC still reached the extremum 
quickly by dual response systems and RLS algorithm. 

• It was shown by example of how the ADROC could 
cope with system with two responses that are confoun-
ded with the correlated input variables. It reveals from 
the evaluation that ADROC can provide excellent con-
trol actions for the MIDO R2R situations even though 
the process exhibits complicated, nonlinear interaction 
effects between control variables, and the drifting dis-
turbances. 

• The DRS/DR2 algorithm in the ADROC provides the 
solution (process recipe) to system that minimizes pri-
mary response and keeps secondary response on the 
target. Even when this is not the case, the ADROC 
would try “the best it can” in the least squares sense, 
which is the base of the recursive estimation method 
utilized. 

 
An interesting opportunity for future research would 

be the extension of ADROC to the multiple-input 

multiple-output (MIMO) case. Further work can be devo-
ted to studying the control performance of ADROC when 
there exhibit other process and/or noise dynamics. An 
area that also needs further investigation is that a “live” 
R2R project allowing us to exercise the controller on-line 
should take place to complement the research results 
shown here. 
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