• Title/Summary/Keyword: maxwell's equation

Search Result 99, Processing Time 0.025 seconds

Applications of Haar Wavelet Based Multiresolution Time-Domain Method to Microwave Structures (Haar 웨이블릿 다중분해능 시간영역 해석법을 이용한 마이크로파 소자 해석)

  • 주세훈;김형훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.935-950
    • /
    • 1999
  • A multiresolution time-domain analysis scheme is derived for the analysis of microwave structures by using Haar wavelets to discretize the Maxwell's curl equation. This technique requires less computational effort than the conventional FDTD method because larger space grid can be used in the simulations. To validate this scheme, several 2-D·3-D microwave structures are simulated and the results are compared with those of the conventional FDTD scheme.

  • PDF

The Analysts of PerformaneeCharacterlstics of a L.I.M. with taken into Conslderatlon of End Effects(l) (단부효과를 고려한 L.I.M.의 동작특성 해석 (1))

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • v.31 no.4
    • /
    • pp.288-295
    • /
    • 1982
  • In this study, the characteristic equation of a double sided short stator linear induction motor, referred to as LIM excited by equivalent current sheet having linear current density was derived using Maxwell's electromagnetic field theory with its entry and exit, end effects taken into consideration. According to the treatment of several physical phenomena in the air-gap i.e. the magnetic flux density distributions, thrust-force, forward and backward travelling wave with decay, normal field, the fundamental data in this study are made reference to improve the characteristics of LIM, effectual electro-magnetic energy conversion devices.

  • PDF

A Study of the Starting Characteristic Analysis of L.I.M. in Auto-Conveyor System (자동 반송장치용 L.I.M.의 기동특성에 관한 연구)

  • 임달호;김완식;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.393-400
    • /
    • 1989
  • The design criteria of Linear Induction Motors (LIM) for Auto-Conveyor System are proposed by analyzing of starting characteristics using an equivalent circuit. By contrasting the solution of the equivalent circuit with that of Maxwell's equation, we induced the parameters of the circuit. Also, the utility of the design criteria has been shown by comparing the basic characteristics with experimental values.

  • PDF

Calculation of Surface Charge Density on Current Carrying Conductors (전류가 흐르는 도체의 표면전하밀도 계산)

  • Lee, Bok-Yong;Lee, Joon-Ho;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.89-91
    • /
    • 1995
  • This paper deals with calculation of surface charge density on current carrying conductors by FEM. The proposed algorithm is formulated by equation of continutity in conductor region and maxwell's equations outside, respectively, Surface charge density is calculated by electric scalar potential and boundary condition for electrostatic fields.

  • PDF

A 3 Dimensional Characteristic Analysis of SLIM by the 2-D Finite Element Method (2차원 유한요소법에 의한 SLIM의 3차원적 특성 해석)

  • Cho, Yun-Hyun;Kim, Yong-Joo;Shin, Pan-Seok;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.37-42
    • /
    • 1990
  • In order to obtain optimal design criteria and operating parameters, a Single-sided Linear Induction Motor (SLIM) is analysed by using a 2-D finite element method with magnetic and current vector potential. In the analysing procedures, the governing equation is derived from Maxwell's equation combined with the magnetic vector potential. As a forcing term, 3-phase voltage source is employed using the Kirchhoff's voltage law in order to look into effects of the unbalanced 3-phase currents and air gap flux density. Also, 2ndary eddy current distribution, longitudinal end and transverse edge effects are in turns visualized by flux lines in 3 different analysing planes as functions of frequency and input power.

  • PDF

ADJOINT SYSTEM FOR A MAGNETO-CONVECTIVE FLOW IN AN ACTIVE MUSHY LAYER

  • Bhatta, Dambaru;Riahi, Daniel N.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1269-1283
    • /
    • 2011
  • Here we consider magneto-convection in a mushy layer which is formed during solidification of binary alloys. The mushy layer is treated as an active porous media with variable permeability. The equations governing the layer are conservation of mass, conservation of heat, conservation of solute, magnetic induction equation, momentum equation governed by the Darcy's law and Maxwell's equations for the magnetic field. To study the second order effects on the flow without solving the second order system, we need to obtain the adjoint system for the flow. This motivates the authors we derive the adjoint system analytically for the mushy layer case. Numerical results of the adjoint system are presented for passive and active mushy layers at the onset of the motion using a set of parameters experimentalists use.

A Study on the Calculation of S.L.I.M. Equivalent Circuit Parameter by Finite Element Method (유한요소법에 의한 선형 유도전동기의 등가회로 정수 산정에 관한 연구)

  • Im, Dal-Ho;Choi, Chang-Gyu;Kim, Gyu-Tak;Lee, Heon-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.37-39
    • /
    • 1989
  • In this paper, the governing equation of each analyzed region of Single-sided Linear Induction Motor was induced from Maxwell's electromagnetic equation. And the linear induction motor was analyzed by finite element method. for calculating inductance, energy perturbation method was applied.

  • PDF

A Study on the Analysis of the Characteristics of a tubular Moor-Trial Manufacure and the Characferistics in starting time- (Tubular motor의 특성에 관한 연구)

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • v.28 no.3
    • /
    • pp.72-77
    • /
    • 1979
  • The object of this paper is to try to develope Tulular Liner Induction Motor which consists of primary stator that generates traveling magnetic field from the three-phase winding of formed-wound concentric coil, and try to identify the characteristics of starting force. To indentify the theoretical starting force formular we have quoted the conventional Maxwell's basic equation and Poisson's equation which are used in the general machines thereby having obtained the formular of the current with in the conductor and of the air gap magnetic field respectively. General starting force formular is acquired by applying the formular of the current and magnetic field which was theoretically derived above. To this theoretically starting force formula various constants and the values of magnetic flux density resulting from the experimental motor are applied to present theoretically calculated values. Comparing these theoretically caculated values experimentally weighed values, we have proved the validity of theoretical research.

  • PDF

Finite Element Study on the Micro-cavity Effect in OLED Devices

  • Lee, Hyeongi;Hwang, Youngwook;Won, Taeyoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • In this paper, we discuss on the optimal design scheme of the bilayer OLED (Organic Light Emitting Diodes) with micro-cavity structure. We carried out the optical simulation on the OLED device and calculated optimal scale of devices with taking the micro-cavity effect into account. Our emission model is based upon an ensemble of radiating dipole antennas. Consequently, we applied Maxwell's equation to this sequence, followed by the analysis on the electrical behaviors of OLED device using Poisson's equation. It contains carrier injection and transportation mechanism. In this process, we found out the thickness of each layer can affect the recombination rate at the emission layer. Therefore, we optimized the thickness of each layer to improve the efficiency of the device.

Optimization of outer core to reduce end effect of annular linear induction electromagnetic pump in prototype Generation-IV sodium-cooled fast reactor

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1380-1385
    • /
    • 2020
  • An annular linear induction electromagnetic pump (ALIP) which has a developed pressure of 0.76 bar and a flow rate of 100 L/min is designed to analysis end effect which is main problem to use ALIP in thermohydraulic system of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Because there is no moving part which is directly in contact with the liquid, such as the impeller of a mechanical pump, an ALIP is one of the best options for transporting sodium, considering the high temperature and reactivity of liquid sodium. For the analysis of an ALIP, some of the most important characteristics are the electromagnetic properties such as the magnetic field, current density, and the Lorentz force. These electromagnetic properties not only affect the performance of an ALIP, but they additionally influence the end effect. The end effect is caused by distortion to the electromagnetic field at both ends of an ALIP, influencing both the flow stability and developed pressure. The electromagnetic field distribution in an ALIP is analyzed in this study by solving Maxwell's equations and using numerical analysis.