This paper introduced the Weibull Marshall-Olkin Power Lomax (WMOPL) distribution. The statistical aspects of the proposed model are presented, such as the quantiles function, moments, mean residual life and mean deviations, variance, skewness, kurtosis, and reliability measures like the residual life function, and stress-strength reliability. The parameters of the new model are estimated using six different methods, and simulation research is illustrated to compare the six estimation methods. In the end, two real data sets show that the Weibull Marshall-Olkin Power Lomax distribution is flexible and suitable for modeling data.
An adaptive extended Kalman filter based on the maximum likelihood (EKF-ML) is proposed for detecting voltage sag in this paper. Considering that the choice of the process and measurement error covariance matrices affects seriously the performance of the extended Kalman filter (EKF), the EKF-ML method uses the maximum likelihood method to adaptively optimize the error covariance matrices and the initial conditions. This can ensure that the EKF has better accuracy and faster convergence for estimating the voltage amplitude (states). Moreover, without more complexity, the EKF-ML algorithm is almost as simple as the conventional EKF, but it has better anti-disturbance performance and more accuracy in detection of the voltage sag. More importantly, the EKF-ML algorithm is capable of accurately estimating the noise parameters and is robust against various noise levels. Simulation results show that the proposed method performs with a fast dynamic and tracking response, when voltage signals contain harmonics or a pulse and are jointly embedded in an unknown measurement noise.
In cellular orthogonal frequency division multiplexing (OFDM) networks, co-channel interference (CCI) leads to severe degradation in the BER performance. To solve this problem, maximum-likelihood estimation (MLE) CCI cancellation scheme has been proposed in the literature. MLE CCI cancellation scheme generates weighted replicas of the transmitted signals where weights represent the estimated channel transfer functions. The replica with the smallest Euclidean distance from the received signal is selected and data are detected. When the received power of the desired and interference signals are nearly the same, the BER performance is degraded. In this paper, we propose a closed-loop power control (PC) scheme capable of detecting the equal received power situation at the mobile station (MS) receiver by using the newly introduced parameter power ratio (PR). When this situation is detected, the MS sends a feedback to the desired base station (BS) which boosts the transmission power in the next frame. At cell edge where signal to interferer ratio (SIR) is considered to have average value between -5 dB and 10 dB, computer simulations show that the proposed CCI cancellation scheme has a gain of 7 dB at 28 Km/h.
It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.
Rapid development of information technology makes our environment become smarter and massive high performance computers are providing powerful computing for that. Graphics Processing Unit (GPU) as a typical high performance component is being widely used for both graphics and general-purpose applications. Although it can greatly improve computing power, it also delivers significant power consumption and need sufficient power supplies. To make high performance computing more sustainable, the important step is to measure it. Current power technologies for GPU have some drawbacks, such as they are not applicable for power estimation at the early stage. In this article, we present a novel power technology to correlate power consumption and the characteristics at the programmer perspective, and then to estimate power consumption of source program without prerunning. We conduct experiments on Nvidia's GT740 platform; the results show that our power model is more accurately than regression model and has an average error of 2.34% and the maximum error of 9.65%.
본 논문에서는 영구자석 선형동기전동기의 초기 자극위치를 추정하는 알고리즘을 제안하였다. 이 알고리즘은 전동기 파라미터를 사용하지 않고 두 제어 축에 같은 추력 지령을 인가하여 각 제어 축에 의해서 발생하는 이동거리의 최대 값을 관측하고 관측된 최대 위치 변위의 오차를 PI 제어함으로써 초기 자극 위치를 빠르고 정확하게 찾는 것이다. 제안된 알고리즘을 시뮬레이션과 실험을 통해 타당성을 검증하였다
영구자석 동기전동기를 단위 전류 당 최대 토크 운전 점에서 운전하기 위해서는 전동기의 상전류 및 온도에 따라 변화하는 인덕턴스 및 역기전력 상수와 같은 전동기의 파라미터들에 대한 정확한 값을 알고 있어야 한다. 전동기 파라미터의 온라인 추정을 위한 적응 추정 기법은 정확한 값을 추정하는 데 어려움이 있고 복잡한 수학 연산을 필요로 하기 때문에 실질적인 응용에는 적합하지 못하다. 본 논문의 목적은 느린 동적 부하를 가지는 벡터 제어 영구자석 동기전동기 구동장치를 위한 단순한 단위 전류 당 최대 토크 운전 점 추적 제어 전략을 제안하는 것이다. 제안된 방식은 전류 위상각을 조절하고 지령 전력의 변화를 관측함으로써 단위 전류 당 최대 토크 운전 점들을 찾아간다. 전류 위상각 조절 전략은 부하 변동이 지령 전력에 미치는 영향을 감지할 수 있도록 설계된다. 따라서, 제안된 방식은 부하 변동에 관계없이 영구자석 동기전동기의 단위 전류 당 최대 토크 운전 점들을 추적할 수 있다. 컴퓨터 시뮬레이션과 실험을 통하여 제안된 방식의 효용성을 보인다.
Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using artificial intelligent(AI) controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using learning mechanism fuzzy neural network(LM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also. this paper is proposed the experimental results to verify the effectiveness of AI controller.
Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.
This paper is about optimal flywheel capacity estimation for Ullueng-do power system. The power system of Ullueng-do has some differences with other island power system in Korea. It includes wind generator, hydro-generators as well as diesel generators. There are some problems on 600kW wind generator. Because of frequent drop of wind generator, the Ulleung-do power system have been threatened on frequency. The power frequency is 60Hz, and it should be between 59.9 and 60.1Hz. However, since the electrical inertia is small and the weight of wind generation is relatively high, generator drop of wind generation might make the power frequency out of boundary. In this paper, the flywheel energy storage system is assumed to be installed on Ulleung-do power system. Then, the maximum wind generation capacity and the optimal superconducting flywheel energy storage system capacity is estimated by the transient stability simulations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.