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A NOVEL WEIBULL MARSHALL-OLKIN POWER LOMAX

DISTRIBUTION: PROPERTIES AND APPLICATIONS TO

MEDICINE AND ENGINEERING
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Abstract. This paper introduced the Weibull Marshall-Olkin Power Lo-

max (WMOPL) distribution. The statistical aspects of the proposed model
are presented, such as the quantiles function, moments, mean residual life

and mean deviations, variance, skewness, kurtosis, and reliability measures

like the residual life function, and stress-strength reliability. The param-
eters of the new model are estimated using six different methods, and

simulation research is illustrated to compare the six estimation methods.
In the end, two real data sets show that the Weibull Marshall-Olkin Power

Lomax distribution is flexible and suitable for modeling data.
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1. Introduction

When describing real-world phenomena, statistical distributions are frequently
used. Several developed distributions for modeling lifetime data have been pre-
sented. The fact that these generalized distributions have more parameters is a
typical feature. The Lomax (1954) distribution, sometimes known as the Pareto
II distribution, is used in many applications. Hassan and Al-Ghamdi (2009) used
it for dependability modeling and life testing. Atkinson and Harrison (1978)
modeled company failure data using Lomax distribution, and Corbellini et al.
(2010) modeled firm size and queuing difficulties using Lomax distribution. It
has also been utilized in the biological sciences for modeling the size distribu-
tion of computer data on servers, (Holland et al., 2006). Some writers, such
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as Bryson (1974) recommended this distribution as an alternative to the expo-
nential distribution for heavy-tailed data. Several generalizations exist based
on the Lomax distribution. Punathumparambath (2011) introduced the double-
Lomax distribution and applied it to IQ data. Ahsanullah (1991) has explored
the record statistics of Lomax distribution. Myhre and Saunders (1982); Cramer
and Schmiedt (2011), and others examined the ramifications of various forms of
right-truncation and right-censorship for Lomax distribution.

On the other hand, several extensions of the Lomax distribution are available
in the literature, including the Beta–Lomax (BL) (Rajab et al., 2013); Topp
Leone Kumaraswamy Lomax (TLKwL) (Ibrahim et al., 2021); McDonald-Lomax
(McL) (Lemonte and Cordeiro, 2013); Exponentiated Lomax (EL) (Abdul-Moniem,
2012); the Marshall–Olkin extended-Lomax (MOEL) (Ghitany et al., 2007; Gupta
et al., 2010); transmuted exponentiated Lomax (TEL) (Ashour and Eltehiwy,
2013) and the Gamma Lomax (GL) (Cordeiro et al., 2015). The Power Lomax
distribution, an extension of the Lomax distribution and one of the most widely
used distributions was first introduced by Rady et al. (2016). It has many ap-
plications in various fields, such as medical and biological sciences, engineering,
finance, actuarial science, lifetime, and reliability modeling.

Some extended generalization forms of the Power Lomax distributions are
listed:

Marshall-Olkin Power Lomax (Ul-Haq et al., 2020); the Marshall–Olkin ex-
tended Power Lomax (Gillariose and Tomy, 2020); the exponentiated Power
Lomax (El-Monsef et al., 2021); the Marshall-Olkin alpha Power Lomax (Al-
mongy et al., 2021); weighted Power Lomax (Hassan et al., 2021); the Weibull
Power Lomax (Hussain et al., 2020); the transmuted Power Lomax (Moltok et
al., 2019); modified Power Lomax (Okorie et al., 2017); inverse Power Lomax
(Hassan and Ab-Allah, 2019); Kumaraswamy Generalized Power Lomax (Na-
garjuna et al., 2021); type II Topp-Leone Power Lomax (Marzouki et al., 2019);
truncated Power Lomax (Hassan et al., 2020); truncated Weibull Power Lomax
(al-Marzouki et al., 2019); truncated Cauchy Power Lomax (Almarashi et al.,
2020); Harris extended Power Lomax (Ogunde et al., 2021); sine Power Lomax
(Nadajuna et al., 2021) and Alpha Power Lomax (Bulut et al., 2021).

Based on the T −X generator, Korkmaz et al., (2019) introduced the Weibull
Marshall–Olkin–G(WMO−G) family of generators. Let G(x;A) be the cumula-
tive distribution function (CDF) of any random variable X as baseline distribu-
tion with parameter vector A and r(t) be the probability density function (PDF)
and R(t) be the CDF of a continuous random variable T defined as T∈[p, q] for
−∞< p < q <∞ . Let V[G(x;A)] be a function of G(x;A) satisfy:

• V[G(x;A)]∈[p, q],
• VG[(x;A)]→p if x tends to −∞ and V[G(x;A)]→q if x tends to ∞, and
• V[G(x;A)] does not decrease monotonically.
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The T −X generator’s CDF is provided by

F (x) =

∫ V(G(x;A))

0

r (t) dt = R(V(G(x;A)) (1)

Consider the Weibull random variable T with β > 0 as a shape parameter and
PDF as

r (t)=βtβ−1e−tβ t > 0, β> 0, (2)

assume

V [G (x,A)] = − ln

[
αG (x,A)

G (x,A)+αG (x,A)

]
= − ln

[
αG (x,A)

1+αG (x,A)

]
(3)

by substituting Equations (2) and (3) to Equation (1), we obtained CDF of the
Weibull Marshall-Olkin-G family as

F (x, α, β, ψ) = 1− exp

(
−
{
− ln

[
αG (x,A)

G (x,A)+αG (x,A)

]}β
)
, (4)

the probability density function (PDF) corresponding to Equation (4) is given
by

f (x, α, β, ψ) =
βg(x,A)

G(x,A)
[
1− αG (x,A)

]{− ln

[
αG (x,A)

G (x,A)+αG (x,A)

]}β−1

× exp

(
−
{
− ln

[
αG (x,A)

G (x,A)+αG (x,A)

]}β
)
, (5)

where the baseline PDF is denoted by g(x,A), α= 1−α, and α> 0 and β> 0 are
shape parameters. The survival function (SF) and hazard rate function (HRF)
of the WMO-G family are, respectively, given by

S(x) = exp

(
−
{
− ln

[
αG(x,A)

G(x,A) + αG(x,A)

]}β
)

h(x;α, β,A) =
βv(x;A)

[1− αG(x,A)]

{
− ln

[
αG(x,A)

G(x,A) + αG(x,A)

]}β−1

,

where v (x;A) is the baseline HRF and v (x;A) = (g(x,A)G (x,A)).
For α=1, the Weibull-X family is obtained as a particular case of the WMO-

G family (Alzaatreh et al., 2013; Cordeiro et al., 2015). We have the MO-G
family for β=1 (Marshall and Olkin, 1997). It follows the baseline distribution
when α=β=1.

The primary rationale for utilizing the Weibull Marshall-Olkin-G family is to
improve the flexibility of the kurtosis compared to the baseline model. In gen-
eral, the purpose of developing novel distributions is to produce mathematical
models that are adaptable. Adding more parameters such as location, shape,
and scale may easily attain this flexibility. This paper attempts to suggest a



1278 E. Moradi and Z. Shokooh Ghazani

new distribution by combining the PL distribution with the Weibull Marshall-
Olkin- G family of generic distributions. The proposed distribution is denoted
by the WMOPL, which stands for the Weibull Marshall-Olkin Power Lomax
distribution. Examining novel adaptive family distributions can result in desir-
able expansions of the Power Lomax distributions, with the possibility of new
perspectives. The WMOPL distribution can generalize several well-established
models from the literature. Its probability density function can take on a va-
riety of shapes depending on the additional shape parameter. Its kurtosis is
more flexible than the Power Lomax model and better than some generalized
distributions of the Power Lomax baseline.

The remainder of this paper is organized in the following manner. The proba-
bility density function (PDF), cumulative distribution function (CDF), survival,
and hazard rate functions, and two linear expansions of the WMOPL distribu-
tion demonstrate in Section 2. Section 3 discusses the mathematical and sta-
tistical features of the WMOPL distribution. Section 4 describes the WMOPL
distribution reliability measures. Section 5 presents six different methods to es-
timate the parameters for the WMOPL distribution. In Section 6, the proposed
WMOPL is applied to some real-world data, and the new distribution flexibility
is demonstrated using two real-world data sets. Finally, the paper is concluded
in Section 7.

2. Proposed model

Rady et al. (2016) introduced an extension of the Lomax distribution pro-

posed by considering the power transformationX = T
1
γ , where the random vari-

able T follows the Lomax distribution. This extension is known as the Power
Lomax distribution.

Consider the Power Lomax (PL) random variable X with parameters (λ, γ, σ)
and corresponding CDF

G (x;λ,γ,σ)= 1−λσ(λ+xγ)−σ
; x > 0; λ,γ,σ> 0,

we present the Weibull Marshall-Olkin Power Lomax (WMOPL) distribution, a
novel five-parameter model. By configuring the Power Lomax CDF from Equa-
tion (4), we obtain

F (x;α, β, λ, γ, σ) = 1− exp

−

(
− ln

[
αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

])β
 (6)

the pdf corresponding to Equation (6) is

f (x;α, β, λ, γ, σ)

=
βσγxγ−1

(λ+ xγ)
[
1− αλσ(λ+ xγ)

−σ
] ×(− ln

[
αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

])β−1
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× exp

−

(
− ln

[
αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

])β
 (7)

α = 1 − α, σ > 0, β > 0, and γ > 0 are shape parameters, whereas α > 0, and
λ > 0 are the scale parameters. Consequently X ∼ WMOPL (α, β, σ, γ, λ)is a
random variable with density function from Equation (7).

The hazard rate and survival functions of the WMOPL distribution are re-
spectively, given by

h (x) =
βσγxγ−1

(λ+ xγ)
−σ
[
1− αλσ(λ+ xγ)

−σ
] ×(−ln

[
αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

])β−1

,

S (x) = exp

−

(
−ln

[
αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

])β
,

some distributions are treated as special cases in the new model; for example,
for α = 1, the WMOPL model simplifies the Weibull Power Lomax distribution.
When β = 1, we have Marshall-Olkin Power Lomax. It follows the Power Lomax
distribution when α = β = 1. Figure 1 provides some plots of the WMOPL
density and hazard rate functions for different values of the parameters.

(a) (b)

Figure 1. The possible plots of the density (a) and hazard rate
(b) functions.

Figure 1 depicts the probability density and hazard rate function for the
WMOPL distribution in various configurations. Figure 1(a) depicts TheWMOPL
probability density figure may exhibit variable behavior. It can take on right-
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and left-skewed, symmetrical, and asymmetrical forms. Figure 1(b) demon-
strates that the WMOPL hazard rate curves may have a falling failure rate,
a rising failure rate, a bathtub shape, an inverted bathtub shape, a reversed-J
form, or a decreasing-increasing decreasing failure rate, indicating that the sug-
gested model is a good lifetime model. The WMOPL distribution has a great
deal of flexibility when it comes to modeling skewed data; hence, it is frequently
employed in fields such as engineering, biological trials, and reliability research.

2.1. Expansion of the CDF function of WMOPL distribution. We
propose two linear representations of the WMOPL density in this section. The
CDF from Equation (6) can be represented as

F (x) =

∞∑
δ=1

(−1)
δ

δ!

(
− ln

[
1−

(
1− αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

)])δβ

, (8)

by utilizing the power series ex =
∑∞

i=0
xi

i! .According to Flajolet and Sedgewick,
(2009), and it’s generalization by Ghazani, (2021), we have

[−ln (1− y)]
b
= yb +

∞∑
k=0

Pk (b) y
k+b+1,

for any real parameter b and 0 < y < 1, Pk (b) are polynomials of the Stirling
type for the nonnegative value of k. Using P−1 (jβ) = 0 the expansion that
results from Equation (8) is

[− ln(1− y)]
δβ
=

∞∑
k=0

Pk−1(δβ)y
k+δβ (9)

then, using Equation (2), the CDF from Equation (7) may be represented as

F (x) =

∞∑
δ=1

∞∑
k=0

(−1)
δ

δ!
Pk−1 (δβ)

[
1− αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

]k+δβ

,

for |y|<1 and real non-integer b, the generalized binomial expansion holds

(1− y)
c
=

∞∑
m=0

(−1)
m

(
c

m

)
ym,

then by substituting generalized binomial expansion, F (x) can be expressed
as

F (x)

=

∞∑
δ=1

∞∑
k,m=0

(−1)δ+mαmλσmPk−1 (δβ)

Γ (δ + 1)

(
k + δβ

m

)
(λ+ xγ)

−σm[
1− αλσ(λ+ xγ)−σ

]−m

,

(10)



A Novel Weibull Marshall-Olkin Power Lomax Distribution 1281

for |y| < 1 and integer positivem, by using a power series expansion in Equation
(10), we obtain

F (x) =

∞∑
δ=1

∞∑
k,m=0

(−1)
δ+m

αmPk−1 (δβ)

Γ (δ + 1)

(
k + δβ

m

)[
λσm(λ+ xγ)

−σm
]

×

( ∞∑
p=0

(−1)
p

(
−m
p

)(
αλσ(λ+ xγ)

−σ
)p)

,

then the WMOPL distribution is attained as

F (x) =

∞∑
m,p=0

Mm,pG(x;σ, λ, γ)
m+p

, (11)

where G (x;σ, λ, γ) = 1 − G (x;σ, λ, γ), is the Power Lomax survival function
and

Mm,p =

∞∑
δ=1

∞∑
k=0

(−1)
δ+m+p

αmPk−1 (δβ)

Γ (δ + 1) (1− α)
−p

(
k + δβ

m

)(
−m
p

)
.

Based on Lehman type-II (L-II) CDF Fe (x) = 1−{1−G (x)}e where e is the
power parameter that is derived from G(x) as the baseline distribution. Every
LT-II Power Lomax can be expressed in exponentiated Power Lomax (EPL)
densities. For every real e and by Fe (x) = 1 − {1−G (x)}ethe power series
converges everywhere

Fe (x) =

∞∑
s=1

(−1)
s+1

(
e

s

)
G (x)

s
,

differentiating the above equation yields

fe (x) =

∞∑
s=0

(−1)
s

(
e

s+ 1

)
hs+1 (x),

where hs+1 (x) = (s+ 1)G (x)
s
g (x) is the EPL density. If e is an integer that

is positive, the index ends at e. Then, the density function of X follows as

f (x) =
∑

(m,p)ϵJ

Mm,pfm+p (x;σ, λ, γ) ,

f (x) =
∑

(m,p)ϵJ

∞∑
s=0

(−1)
sMm,p

(
m+ e

s+ 1

)
(s+ 1)G (x)

s
g(x) (12)

Equation (12) demonstrates that the WMOPL density function is a linear
combination of the EL density function and the LTI Power Lomax densities.

3. Statistical properties

This section focuses on some statistical properties of the WMOPL distribu-
tions, such as the quantiles function, the moment generating function, moments,
conditional moments, mean residual life, and the residual life function.
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3.1. Quantiles function.

Theorem 3.1. Let X be a random variable with WMOPL distribution. The
quantile function Qp is defined by F(Q(p))=p and for every 0 < p < 1, λ, σ, γ >
0 expressed by the equation:

Qp = λ
1
γ



[
α− αe−(− ln(1−p))1/β

] 1
σ

e−(− ln(1−p))1/βσ

− 1


1
γ

, (13)

Proof. The CDF given in Equation (6) can be written as

F (Q (p)) = 1− exp

−

(
−ln

[
αλσ(λ+Qp

γ)
−σ

1− αλσ(λ+Qp
γ)

−σ

])β
 = p,

then

ln

[
αλσ(λ+Qp

γ)
−σ

1− αλσ(λ+Qp
γ)

−σ

]
= −(−ln (1− p))

1
β ,

so

αλσ(λ+Qp
γ)

−σ

1− αλσ(λ+Qp
γ)

−σ = e−(−ln(1−p))
1
β
,

(λ+Qp
γ)

−σ
=

e−(−ln(1−p))
1
β

λσ
(
α− αe−(−ln(1−p))

1
β

) ,
so, we have

λ+Qp
γ =

λ

[
α− αe−(−ln(1−p))

1
β

] 1
σ

e−(−ln(1−p))
1

βσ

,

hence,

Qp = λ
1
γ



[
α− αe−(− ln(1−p))1/β

] 1
σ

e−(− ln(1−p))1/βσ

− 1


1
γ

.

□

Remark 3.1. The three quantiles of WMOPL may be derived by setting p =
0.25, p = 0.5, and p = 0.75 in Equation (13).

3.2. Moments and generating functions. Moment analysis can investi-
gate a distribution’s most significant properties and characteristics (e.g., mean,
variance, skewness, and kurtosis). We extract the WMOPL distribution’s or-
dinary moments, moment generating function (MGF), Conditional moments,
mean residual life, and mean deviations. The following theorem illustrates the
WMOPL’s nth raw moment.
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Theorem 3.2. The nth moments about the origin of the WMOPL distribution
are given by

µ′
n =

∑
(m,p)ϵJ

m+p∑
s=0

s∑
k=0

(−1)
s+k

σλ
n
γ (s+ 1)

(
s

k

)(
m+ p

s+ 1

)
Mm,p

×
Γ
(

n
γ + 1

)
Γ
(
kσ + σ − n

γ + 1
)

Γ ((k + 1)σ)
(14)

Proof. The raw moment of the WMOPL distribution is given by

µ′
n =

∫ ∞

0

xnf (x) dx =
∑

(m,p)ϵJ

∞∑
s=0

(−1)
s+1

(
m+ p

s+ 1

)
Mm,pσγλ

σ (s+ 1)

×
∫ ∞

0

xn+γ−1(λ+ xγ)
−σ−1

[
1− λσ(λ+ xγ)

−σ
]s
dx

let λ(λ+ xγ)
−1

= z, we have

xn =

(
λ

z

)n
γ

(1− z)
n
γ ,

using the binomial expansion, we obtain

(1− zσ)
s
=

∞∑
k=0

(−1)
k

(
s

k

)
zkσ,

after some algebraic utilizations, we have

µ′
n

=
∑

(m,p)ϵJ

∞∑
s=0

∞∑
k=0

(−1)
s+k

(
s

k

)(
m+ p

s+ 1

)
Mm,pσλ

n
γ (s+ 1)

×
∫ 1

0

zkσ+σ−n
γ (1− z)

n
γ dz

then

µ′
n = E [Xn] =

∑
(m,p)ϵJ

∞∑
s=0

∞∑
k=0

(−1)
s+k

(
s

k

)(
m+ p

s+ 1

)
Mm,pσλ

n
γ (s+ 1)

×
Γ
(

n
γ + 1

)
Γ
(
kσ + σ − n

γ

)
Γ ((k + 1)σ)

.

□

Remark 3.2. nth central Moments µn of X can be determined as

µn =

n∑
j=0

s∑
k=0

(−1)
s+k+j

(
n

j

)(
s

k

)
Mm,p
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×
Γ
(

1
γ + 1

)
Γ
(
kσ + σ − 1

γ + 1
)
+ Γ

(
n−j
γ + 1

)
Γ
(
kσ + σ − n−j

γ + 1
)

Γ ((k + 1)σ)

Proof. Based on the definition of the central moment as

µn = E(X − µ)
n
=

n∑
j=0

(−1)
j

(
n

j

)
µ′
1µ

′
n−j ,

and by substituting Equation (14), the proof is completed. □

Theorem 3.3. Considering the WMOPL distribution, the nth conditional mo-
ment, E (Xn | X > t), is given by

E (Xn | X > t) =
1

S (x)
×

∑
(m,p)ϵJ

m+p∑
s=0

s∑
k=0

(−1)
s+k

σλ
n
γ (s+ 1)

(
s

k

)(
m+ p

s+ 1

)
Mm,p

×B

(
n

γ
+ 1, kσ + σ − n

γ
+ 1, t

)
.

Proof. E (Xn | X > t), is given by

E (Xn | X > t) =
1

S (t)
Jn (t) =

1

S (t)

∫ ∞

t

xnf (x) dx,

then

Jn (t) =
∑

(m,p)ϵJ

m+p∑
s=0

s∑
k=0

(−1)
s+k

σλ
n
γ (s+ 1)

(
s

k

)(
m+ p

s+ 1

)
Mm,p

×B

(
n

γ
+ 1, kσ + σ − n

γ
+ 1, t

)
, (15)

where B(α, β, t) denotes the incomplete beta function. □

The following result demonstrates the Mean Residual Life (MRL) in applying
conditional moments in the WMOPL distribution. The MRL function represents
the item’s projected remaining life , X − t, if it survives to time x.

Remark 3.3. The WMOPL MRL function can be written

mX (t) =E (X − t | X > t) =
1

S (t)
J1 (t)− t

=
∑

(m,p)ϵJ

m+p∑
s=0

s∑
k=0

(−1)
s+k

σλ
1
γ (s+ 1)

(
s

k

)(
m+ p

s+ 1

)
Mm,p

×B

(
1

γ
+ 1, kσ + σ − 1

γ
+ 1, t

)
− t

where J1 (t) can be acquired from Equation (15).

Further use of conditional moments is to determine the mean deviations from
the mean and the median, as illustrated in the following result.
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Remark 3.4. If M denotes the median, then the mean deviation from the
median of the WMOPL distribution can be calculated as

δM =2
∑

(m,p)ϵJ

m+p∑
s=0

b∑
k=0

∞∑
b=0

(−1)
s+m

(
m+ p

s+ 1

)(
bγ

k

)
Mm,p (s+ 1)

× λγ
sb(1 + λMγ)

γ−k(b+1)

Γ (b+ 1)
[
1− 1

γσ + b+ 2
]

−
∑

(m,p)ϵJ

m+p∑
s=0

s∑
k=0

(−1)
s+k

σλ
1
γ (s+ 1)

(
s

k

)(
m+ p

s+ 1

)
Mm,p

×
Γ
(

1
γ + 1

)
Γ
(
kσ + σ − 1

γ + 1
)

Γ ((k + 1)σ)
.

Proof. The median deviation is defined as

δM =E |X −M | =
∫ ∞

0

|x−M | f (x) dx

=

∫ M

0

(M − x) f (x) dx+

∫ ∞

M

(x−M) f (x) dx = 2J1 (M)− µ,

where

J1 (M) =

∫ ∞

M

xf (x) dx

=
∑

(m,p)ϵJ

m+p∑
s=0

s∑
k=0

(−1)
s+k

σλ
1
γ (s+ 1)

(
s

k

)(
m+ p

s+ 1

)
Mm,p

×B

(
1

γ
+ 1, kσ + σ − 1

γ
+ 1,M

)
.

Using the R software, the mean, variance, skewness, and kurtosis of the WMOPL
distribution are estimated numerically for various values of the parameters. The
values in Table 1 demonstrate that the skewness of the WMOPL distribution
can range between (−3.1164, 10.7706), whilst The PL distribution’s skewness can
only rang between (2.1572, 3.1908). The various for the WMOPL kurtosis ranges
from 0.0162 to12.7148, whereas the PL distribution’s kurtosis ranges from only
2.3541 to 6.9312. In addition, the WMOPL model can be negatively or positively
biased. Consequently, the WMOPL distribution is a flexible distribution that
can be utilized to simulate skewed data.

□

4. Reliability measures

Several notable WMOPL reliability measurements are derived in this section.
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Table 1. Moments of the WMOPL distribution for selected
values of the parameters.

parameters mean variance Skewness kurtosis
α = 0.5, β = 3, λ = 1.5, γ = 2, σ = 1 1.0468 0.0879 0.2709 0.0162
α = 1.5, β = 1.5, λ = 0.5, γ = 2, σ = 3 0.4026 0.0289 0.6042 0.5328
α = 1.5, β = 1.5, λ = 2, γ = 3, σ = 0.5 2.3316 2.2933 3.1344 12.7148
α = 1.5, β = 2, λ = 0.5, γ = 3, σ = 1.5 0.7231 0.0327 0.1732 0.0523
α = 1.5, β = 2, λ = 1.5, γ = 3, σ = 0.5 2.0125 0.7129 1.3463 3.5434
α = 1.5, β = 2, λ = 3, γ = 0.5, σ = 1.5 10.2410 3.8222 5.4017 5.4394
α = 1.5, β = 3, λ = 1.5, γ = 2, σ = 0.5 2.8716 1.3634 0.9146 1.3688
α = 2, β = 2, λ = 0.5, γ = 3, σ = 1 1.0113 0.0827 0.4612 0.4565
α = 2, β = 2, λ = 3, γ = 0.5, σ = 1 10.9778 8.5188 8.5550 2.8985
α = 2, β = 3, λ = 1, γ = 0.5, σ = 2 0.7597 0.4058 1.7520 4.8229
α = 2.5, β = 0.5, λ = 1, γ = 1.5, σ = 3 3.6754 8.4897 10.7706 8.5938
α = 2.5, β = 0.5, λ = 3, γ = 1.5, σ = 1 10.8325 3.3571 10.4399 9.0928
α = 2.5, β = 3, λ = 1.5, γ = 0.5, σ = 1 10.2484 9.7620 -3.1164 7.0293
α = 3, β = 1.5, λ = 0.5, γ = 1, σ = 2 0.7205 0.3615 -2.2727 10.2366

4.1. Residual life function. The residual lifetime is defined as the period
remaining until the event of interest occurs at age t > 0.

Theorem 4.1. Let X has WMOPL distribution,

• the survival function of the residual lifetime R(t) is given by

SR(t) (x) =
S (x+ t)

S (t)
=

exp

{
−
(
−ln

[
αλσ(λ+(x+t)γ)−σ

1−α(λ+(x+t)γ)−σ

])β}
exp

{
−
(
−ln

[
αλσ(λ+tγ)−σ

1−α(λ+tγ)−σ

])β} , x > 0,

• the associated CDF is given by

FR(t) (x) =

exp

{
−
(
−ln

[
αλσ(λ+tγ)−σ

1−α(λ+tγ)−σ

])β}
− exp

{
−
(
−ln

[
αλσ(λ+(x+t)γ)−σ

1−α(λ+(x+t)γ)−σ

])β}
exp

{
−
(
−ln

[
αλσ(λ+tγ)−σ

1−α(λ+tγ)−σ

])β} ,

• the corresponding pdf is given by

fR(t) (x) =αβγσλ
σ ×

exp

{
−
(
−ln

[
αλσ(λ+(x+t)γ)−σ

1−α(λ+(x+t)γ)−σ

])β}
exp

{
−
(
−ln

[
αλσ(λ+tγ)−σ

1−α(λ+tγ)−σ

])β}

×

(
−ln

[
αλσ(λ+(x+t)γ)−σ

1−α(λ+(x+t)γ)−σ

])β−1

(x+ t)
1−γ

(λ+ (x+ t)
γ
)
[
1− α(λ+ tγ)

−σ
] ,
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• the associated hazard rate function is given by

hR(t) (x) = αβγσλσ ×

(
−ln

[
αλσ(λ+(x+t)γ)−σ

1−α(λ+(x+t)γ)−θ

])β−1

(x+ t)
1−γ

(λ+ (x+ t)
γ
)
[
1− α(λ+ tγ)

−σ
] .

4.2. Stress-strength reliability. Stress-strength models describe the life of
system components that have a random strength X1 and are subject to an
unpredictably high-stress X2. The component performs appropriately as long
as X1 > X2 but fails when X1 < X2. If the stress surpasses the system’s
strength, the system fails. R = P (X1 > X2) denotes the component’s reliability.
Stress-strength models have many applications, notably in reliability engineering
concepts such as structures, aircraft structural fatigue failure, and rocket motor
deterioration.

Theorem 4.2. Assume that X1 and X2 to be independently distributed, with
X1 ∼WMOPL (α1, β1, σ1, γ1, λ1) and X2 ∼WMOPL (α2, β2, σ2, γ2, λ2). Then,
the parameter representing the Stress-strength relationship is as follows:

R =1−
∑

(m,p)ϵJ

∞∑
s=0

m+p∑
i=0

γ1i
γ2∑
j=0

(−1)
i+j+sM(1)

m,pM(2)
m,p(s+ 1)λ1

(σ1+1−i)(λ2)
i

×
(
m+ p

s+ 1

)(
m+ p

i

)(γ1i

γ2

j

)Γ
(

s+m+p
m+p

)
Γ
(

σ2−j
σ2

)
Γ
(

s
m+p − j

σ2

) .

Proof. By definition of the stress-strength parameter, we have

R = Pr (X1 > X2) =

∫ ∞

0

f2 (y) [1− F1 (y)] dy = 1−
∫ ∞

0

f2 (y)F1 (y) dy,

where by Equations (11) and (12) we have

F1 (y) =

∞∑
m,p=0

M(1)
m,p

[
G1(y;σ1, λ1, γ1)

]m+p
,

f2 (y) =
∑

(m,p)ϵJ

∞∑
s=0

(−1)
s
M (2)

m,p

(
m+ p

s+ 1

)
(s+ 1) [G2 (y;σ1, λ1, γ1)]

s
g2 (y).

Now, ∫ ∞

0

f2 (y)F1 (y) dy

=
∑

(m,p)ϵJ

∞∑
s=0

M(1)
m,pM

(2)

m,p
(−1)

s
(s+ 1)

(
m+ p

s+ 1

)∫ ∞

0

G
m+p

1 (y)Gs
2(y)g2(y)dy
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where G1 (y) = λ1
σ1 (λ1 + yγ1)

−σ1 , and G2 (y) = λ2
σ2 (λ2 + yγ2)

−σ2 , after some
algebraic simplification, we get

(λ2 + yγ2) =

(
G2 (y)

λ2
σ2

)−1
σ2

,

then y =

[(
G2(y)
λ2

σ2

)−1
σ2 − λ2

] 1
γ2

, by substituting in G1 (y), we have

G1 (y) = λ1
σ1

{
λ1 + λ2

[(
G2 (y)

)−1
σ2 − 1

] γ1
γ2

}−σ1

,

so, we can write

A =

∫ ∞

0

G
m+p

1 (y)Gs
2 (y) g2 (y) dy

=

∫ ∞

0

[
λ1

−1

{
λ1 + λ2

[(
G2 (y)

)−1
σ2 − 1

] γ1
γ2

}](−σ1)(m+p)

Gs
2 (y) g2 (y)dy.

Consider G2 (y) = Z, so g2 (y) dy = dz and A can be rewritten as

A =

∫ 1

0

z
s

m+p

{
1− λ2

λ1

[
1− (1− z)

−1
σ2

] γ1
γ2

}(m+p)

dz,

by performing binomial series expansion in two steps, we have{
1− λ2

λ1

[
1− (1− z)

−1
σ2

] γ1
γ2

}m+p

=

m+p∑
i=0

(−1)
i

(
m+ p

i

)(
λ2
λ1

)i[
1− (1− z)

−1
σ2

] γ1i
γ2

=

m+p∑
i=0

γ1i
γ2∑
j=0

(−1)
i+j

(
m+ p

i

)(γ1i

γ2

j

)(
λ2
λ1

)i

(1− z)
−j
σ2 ,

as a result of substitution and simplification, we have

A =

m+p∑
i=0

γ1i
γ2∑
j=0

(−1)
i+j

λ1
(σ1+1)

(
m+ p

i

)(γ1i

γ2

j

)(
λ2
λ1

)i ∫ 1

0

(1− z)
−j
σ2 z

s
m+p dz,

then

A =

∑m+p
i=0

∑ γ1i
γ2
j=0 (−1)

i+j
λ1

(σ1+1)
(

λ2

λ1

)i(
m+p

i

)( γ1i
γ2
j

) (
Γ
(

s+m+p
m+p

)
Γ
(

σ2−j
σ2

))
Γ
(

s
m+p − j

σ2

) .

Then by substitution, the stress-strength parameter is represented as

R =1−
∑

(m,p)ϵJ

∞∑
s=0

m+p∑
i=0

γ1i
γ2∑
j=0

(−1)
i+j+sM

(1)

m,p

M

(2)

m,p

(s+ 1)
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× λ
(σ1+1−i)
1 (λ2)

i

(
m+ p

s+ 1

)(
m+ p

i

)(γ1i

γ2

j

)Γ
(

s+m+p
m+p

)
Γ
(

σ2−j
σ2

)
Γ
(

s
m+p − j

σ2

) .

□

5. Estimstion

In this section, we drive six methods to estimate the parameters of the
WMOPL distribution.

5.1. Maximum likelihood (ML). Let X1, X2, . . . , Xn be a random sample
of size n from a population with the WMOPL distribution and the unknown pa-

rameter vector θ = (α, β, σ, γ, λ)
T
. Maximizing the log-likelihood function yields

parameters’ maximum likelihood estimate (MLE). The WMOPL distribution’s
log-likelihood function is provided by

ℓ (θ)αn log (β)+n log (σ)+n log (γ)+(γ−1)
∑

logxi−
∑

log (λ+xγi )

−
∑

log
[
1−αλσ(λ+xγi )

−σ
]
+(β−1)

∑
log

{
− ln

[
αλσ(λ+xγi )

−σ

1−αλσ(λ+xγi )
−σ

]}

−
∑{

− ln

{
αλσ(λ+xγi )

−σ

1−αλσ(λ+xγi )
−σ

}}β

(16)

Let ηi =
αλσ(λ+xγ

i )
−σ

1−αλσ(λ+xγ
i )

−σ . Then, we can write as

ℓ (θ)αn log (β) + n log (σ) + n log (γ) + (γ − 1)
∑

log xi −
∑

log (λ+ xγi )

−
∑

log
[
1− αλσ(λ+ xγi )

−σ
]
+ (β − 1)

∑
log {−ln [ηi]} −

∑
{−ln {ηi}}β .

The maximum likelihood estimators for the parameters α̂, β̂, γ̂, σ̂, and λ̂ are
generated by simultaneously solving the following derivatives concerning the
five log-likelihood parameters:

∂ℓ(θ)

∂α
= − 1

α

n∑
i=1

ηi +
1

α

n∑
i=1

(1− ηi)

[
β − 1

ln ηi
+ β{− ln ηi}β−1

]
= 0,

∂l (θ)

∂β
=
n

β
+

n∑
i=1

log {− ln ηi}×
[
1− {− ln ηi}β

]
= 0,

∂l (θ)

∂γ
=
n

γ
+

n∑
i=1

log xi −
n∑

i=1

xγi log xi
λ+ xγi

−
n∑

i=1

σxγi log xi × ηi
αλσ (λ+ xγi )

+

n∑
i=1

xγi log xi
(λ+ xγi )

[
1− xγi ηi log xi

α

] [
(β − 1)

log ηi
− β{− log ηi}β−1

]
= 0,
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∂ℓ(θ)

∂λ
=

−
n∑

i=1

1

λ+xγi
+

n∑
i=1

ασηi

[
λ−1+(λ+xγi )

−1

α

]
+(β−1)

n∑
i=1

(
1
λ+

1
λ+xγ

i

)
[σ−αηi+ασ]

logηi

−
n∑

i=1

β{−logηi}β−1

(
1

λ
+

1

λ+xγi

)
[σ−αηi+ασ]= 0,

∂ℓ (θ)

∂σ
=
n

σ
+(β−1)

n∑
i=1

αλσ(λ+xi
γ) [logλ−σlog(λ+xiγ)]
ηilogηi

−
n∑

i=1

β{−logηi}β−1
αλσ (λ+xi

γ) [logλ−σlog(λ+xiγ)] = 0.

5.2. Ordinary least squares (OLS). Assume that the random sampleX1, X2,
. . . , Xn of size, n has the WMOPL distribution and the unknown parameters

vector θ = (α, β, γ, σ, λ)
T
and CDF (4). The ordinary least squares (OLS) esti-

mate α̂OLS , β̂OLS , γ̂OLS , σ̂OLS and λ̂OLS of α, β, γ, σ and λ can be determined
numerically by maximizing the function.

OLS (θ) =

n∑
i=1

n+ 1− i

n+ 1
− exp

−

(
−ln

[
αλσ(λ+ xγ)

−σ

1− αλσ (λ+ xγ)
−σ

])β

2

.

Assume that ζ (i, n) = n+1−i
n+1 and ηi is given in equation (16). Then, we can

write as

OLS (θ) =

n∑
i=1

[
ζ (i, n)− exp

{
−(− ln ηi)

β
}]2

.

By solving the following equations, estimates can be obtained:

∂OLS (θ)

∂α
=

n∑
i=1

[
ζ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ1 (xi;α, β, λ, γ, σ) = 0,

∂OLS (θ)

∂β
=

n∑
i=1

[
ζ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ2 (xi;α, β, λ, γ, σ) = 0,

∂OLS (θ)

∂λ
=

n∑
i=1

[
ζ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ3 (xi;α, β, λ, γ, σ) = 0,

∂OLS (θ)

∂γ
=

n∑
i=1

[
ζ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ4 (xi;α, β, λ, γ, σ) = 0,

∂OLS (θ)

∂σ
=

n∑
i=1

[
ζ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ5 (xi;α, β, λ, γ, σ) = 0,
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where

ψ1 (xi;α,β,λ,γ,σ)=β(− lnηi)
β−1

exp
{
−(− ln ηi)

β
}
×
(ηi
α
−αη2i

)
, (17)

ψ2 (xi;α,β,λ,γ,σ)=(− lnηi)
β
logηiexp

{
−(− lnηi)

β
}
×
(
ηβi ln ηi

)
, (18)

ψ3 (xi;α,β,λ,γ,σ)=β(− lnηi)
β−1

exp
{
−(− lnηi)

β
}
×
[
ηi−

α

α
ηi

2

]
, (19)

ψ4 (xi;α,β,λ,γ,σ)=ηiσβxi
γ lnxi (− lnηi)

β−1
exp

{
−(− lnηi)

β
}
×
(
α

α
−1

)
, (20)

ψ5 (xi;α,β,λ,γ,σ)=β(− lnηi)
β−1

exp
{
−(− lnηi)

β
}
×
[

ηi

1−αλσ (λ+xγ)−σ

]
. (21)

5.3. Weighted least squares (WLS). By minimizing the following func-
tion concerning the parameters, the weighted least squares (WLS) estimates of

α, β, γ, σ and λ for the WMOPL distribution are α̂WLS , β̂WLS , γ̂WLS , σ̂WLS and

λ̂WLS , respectively.

WLS (θ) =

b∑
t=1

(b+ 1)2 (b+ 2)

t (b− t+ 1)

(
1− exp

{
−
(
−ln

[
αλσ(λ+ xγ)−σ

1− αλσ (λ+ xγ)−σ

])β
}

− t

b+ 1

)2

,

Let ω (t, b) = (b+1)2(b+2)
t(b−t+1) , and § (t, b) = t

b+1 , then

WLS (θ)=

b∑
t=1

ω (i,b)
(
exp

{
−(− lnηt)

β
}
−§ (t, b)

)2
,

in the next step, solve the nonlinear equations.

∂WLS (θ)

∂α
=

b∑
t=1

ω (t, b)
[
exp

{
−(− ln ηt)

β
}
− § (t, b)

]
× ψ1 (xt;α, β, λ, γ, σ) = 0,

∂WLS (θ)

∂β
=

b∑
t=1

ω (t, b)
[
exp

{
−(− ln ηt)

β
}
− § (t, b)

]
× ψ2 (xt;α, β, λ, γ, σ) = 0,

∂WLS (θ)

∂λ
=

b∑
t=1

ω (t, b)
[
exp

{
−(− ln ηt)

β
}
− § (t, b)

]
× ψ3 (xt;α, β, λ, γ, σ) = 0,

∂WLS (θ)

∂γ
=

b∑
t=1

ω (t, b)
[
exp

{
−(− ln ηt)

β
}
− § (t, b)

]
× ψ4 (xt;α, β, λ, γ, σ) = 0,

and

∂WLS (θ)

∂σ
=

b∑
t=1

ω (t, b)
[
exp

{
−(− ln ηt)

β
}
− § (t, b)

]
×ψ5 (xt;α, β, λ, γ, σ) = 0,

where (16), (17), (18), (19), (20), and (21) denote ηAt and ψj (xt;α, β, λ, γ, σ)
(j = 1, 2, 3, 4, 5) .
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5.4. Cramer-Von Mises estimators (CM). Minimizing the following func-
tion yields the Cramér-Von Mises estimators for the unknown parameters of the
WMOPL distribution.

C (α,β,λ,γ,σ)=
1

12n
+

n∑
i=1

[
2 (i− n)−1

2n
+exp

{
−
(
−ln

[
αλσ(λ+xγ)−σ

1−αλσ (λ+xγ)−σ

])β
}]2

,

with respect to α, β, γ, σ and λ. Let δ (i, n) = 2(i−n)−1
2n and ηi=

αλσ(λ+xγ
i )

−σ

1−αλσ(λ+xγ
i )

−σ .

Then, we can write

CM (α,β,λ,γ,σ)=
1

12n
+

n∑
i=1

[
δ (i, n)+exp

{
−(− lnηi)

β
}]2

.

The following equations can be solved numerically to obtain these parameters:

∂CM (θ)

∂α
=

n∑
i=1

[
δ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ1 (xi;α, β, λ, γ, σ) = 0,

∂CM (θ)

∂β
=

n∑
i=1

[
δ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ2 (xi;α, β, λ, γ, σ) = 0,

∂CM (θ)

∂λ
=

n∑
i=1

[
δ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ3 (xi;α, β, λ, γ, σ) = 0,

∂CM (θ)

∂γ
=

n∑
i=1

[
δ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ4 (xi;α, β, λ, γ, σ) = 0,

∂CM (θ)

∂σ
=

n∑
i=1

[
δ (i, n)− exp

{
−(− ln ηi)

β
}]

× ψ5 (xi;α, β, λ, γ, σ) = 0,

where ψi (xi;α, β, λ, γ, σ) (i = 1, 2, 3, 4, 5) are given by equations (17)–(21), re-
spectively.

5.5. Maximum product of spacing (MPS). If the independently random
sample X1, X2, . . . , Xn of n distributed random variables have the WMOPL

distribution, then the MPS estimates α̂MPS , β̂MPS , λ̂MPS , γ̂MPS and σ̂MPS of
α, β, λ, γ, and σ, can be obtained by maximizing the following function.

MPS (α,β,λ,γ,σ)=
1

n+ 1

n+1∑
i=1

ln δi (α,β,λ,γ,σ),

Where the discrepancies between the cumulative distribution function values
assessed at consecutive ordered values are represented by

δζ (α,β,λ,γ,σ)= F
(
x(ζ)

∣∣ α, β, λ, γ, σ)−F (x(ζ−1)

∣∣ α, β, λ, γ, σ) , ζ= 1,. . ., n,

Where F
(
x(0)

∣∣ α,β,λ,γ,σ)= 0 and F
(
x(ζ+1)

∣∣ α,β,λ,γ,σ)= 1.



A Novel Weibull Marshall-Olkin Power Lomax Distribution 1293

By calculating the following derivatives concerning the five parameters, the
maximum product of spacing estimators for the parameters is derived:

∂MPS(θ)

∂α
=
ψ1(xi|α,β,λ,γ,σ)−ψ1(xi−1|α,β,λ,γ,σ)

δi(α,β,λ,γ,σ)
= 0,

∂MPS(θ)

∂β
=
ψ2(xi|α,β,λ,γ,σ)−ψ2(xi−1|α,β,λ,γ,σ)

δi(α,β,λ,γ,σ)
= 0,

∂MPS(θ)

∂λ
=
ψ3(xi|α,β,λ,γ,σ)−ψ3(xi−1|α,β,λ,γ,σ)

δi(α,β,λ,γ,σ)
= 0,

∂MPS(θ)

∂γ
=
ψ4(xi|α,β,λ,γ,σ)−ψ4(xi−1|α,β,λ,γ,σ)

δi(α,β,λ,γ,σ)
= 0,

∂MPS (θ)

∂σ
=
ψ5 (xi | α,β,λ,γ,σ)−ψ5 (xi−1 | α,β,λ,γ,σ)

δi (α,β,λ,γ,σ)
= 0.

Where ψj (xi | α, β, λ, γ, σ) (j=1, 2, 3, 4, 5) are defined by Equations (17)-(21),
respectively.

5.6. Anderson–Darling (AD). By minimizing the function AD(θ), we may
obtain the Anderson–Darling estimates (ADs) of the parameters α, β, λ, γ, and

σ, and, indicated by α̂ADE , β̂ADE , λ̂ADE , γ̂ADE and σ̂ADE .

AD(θ) = −n− 1

n

n∑
τ=1

(2τ−1)
{
lnF (xτ | α,β,γ,λ,σ)+ lnF (xn−τ+1 | α,β,γ,λ,σ)

}
,

so

∂AD(θ)

∂α
=

n∑
τ=1

(2τ−1)

{
ψ1(xτ |α,β,λ,γ,σ)
F (xτ | α,β,λ,γ,σ)

− ψ1(xn−τ+1|α,β,λ,γ,σ)
F (xn−τ+1 | α,β,λ,γ,σ)

}
,

∂AD(θ)

∂β
=

n∑
τ=1

(2τ−1)

{
ψ2(xτ |α,β,λ,γ,σ)
F (xτ | α,β,λ,γ,σ)

− ψ2(xn−τ+1|α,β,λ,γ,σ)
F (xn−τ+1 | α,β,λ,γ,σ)

}
,

∂AD(θ)

∂λ
=

n∑
τ=1

(2τ−1)

{
ψ3(xτ |α,β,λ,γ,σ)
F (xτ | α,β,λ,γ,σ)

− ψ3(xn−τ+1|α,β,λ,γ,σ)
F (xn−τ+1 | α,β,λ,γ,σ)

}
,

∂AD(θ)

∂γ
=

n∑
τ=1

(2τ−1)

{
ψ4(xτ |α,β,λ,γ,σ)
F (xτ | α,β,λ,γ,σ)

− ψ4(xn−τ+1|α,β,λ,γ,σ)
F (xn−τ+1 | α,β,λ,γ,σ)

}
,

∂AD(θ)

∂σ
=

n∑
τ=1

(2τ−1)

{
ψ5(xτ |α,β,λ,γ,σ)
F (xτ | α,β,λ,γ,σ)

− ψ5(xn−τ+1|α,β,λ,γ,σ)
F (xn−τ+1 | α,β,λ,γ,σ)

}
,
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6. Simulation results

This section shows the results of the six methods using simulations. The
data are created using the WMOPL distribution with different values of n. We
produce thousand random samples from the WMOPL distribution for each set-
ting. We obtain the average values of the biases and root mean squared errors
(RMSEs) associated with the estimations, so that

Biasθ̂=

∑1000
i=1

(
θ̂i−θ

)
1000

and RMSE θ̂=

√√√√∑1000
i=1

(
θ̂i−θ

)2
1000

,

where θ=(α,β,γ,σ,λ)
T
and θ̂=

(
α̂, β̂, γ̂, σ̂, λ̂

)T
. Figure 2 support the conclusion

that all of the estimators are asymptotically unbiased since their biases tend to
zero as n grows. The RMSEs of all estimators converge to zero as n grows large,
demonstrating their consistency. Except in a few instances, the CME, WLS, and
OLS respectively estimate outperform the other estimates in terms of minimal
biases and RMSEs. Overall, MLEs tend to have the most significant biases
and RMSEs compared to the other approaches. So estimating the WMOPL
distribution’s unknown parameters using the three techniques CME, WLS, and
OLS respectively technique makes sense.

(a) (b) (c)

(d) (e)

Figure 2. Biases for the estimates of (α, β, λ, γ, σ) =
(1, 1, 0.5, 0.5, 0.5) for different estimation methods.
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6.1. Applications. In this section we demonstrate WMOPL distribution’s
flexibility using two real data sets. The WMOPL distribution is checked and
compared with other competitive distributions such as Marshall-Olkin extended
Power Lomax, Kumaraswamy Power Lomax, Marshall-Olkin Alpha Power Lo-
max, Beta Generalized Weibull (Singla et al., 2012), Beta Marshall Olkin Normal
(Alizadeh et al., 2015), Marshall-Olkin Gumbel Lomax (Nwezza and Ugwuowo,
2020), Exponentiated Power Lomax, for its fit to the data sets. Using spe-
cific goodness-of-fit analytical measures, such as maximum log-likelihood, AIC
(Akaike information criterion), BIC (Bayesian information criterion), and KS
(Kolmogorov–Smirnov) statistics with their PV (p-value), we compared the com-
peting distributions. The analyses are conducted in the R environment. The first
set of data contains indomethacin plasma concentrations following intravenous
administration. We used 66 observations from pooled data. These findings were
published in (Kwan et al., 1976). Table 2 contains the data.

Table 2. Plasma Concentration data

1.5 0.94 0.78 0.48 0.37 0.19 0.12 0.11 0.08 0.07
0.05 2.03 1.63 0.71 0.70 0.64 0.36 0.32 0.20 0.25
0.12 0.08 2.72 1.49 1.16 0.80 0.80 0.39 0.22 0.12
0.11 0.08 0.08 1.85 1.39 1.02 0.89 0.59 0.40 0.16
0.11 0.10 0.07 0.07 2.05 1.04 0.81 0.39 0.30 0.23
0.13 0.11 0.08 0.10 0.06 2.31 1.44 1.03 0.84 0.64
0.42 0.24 0.17 0.13 0.10 0.09

The second set of data is on aircraft windshield failure and repair times.
These data were published by (Murthy et al., 2004) and analyzed in (Ramos et
al., 2013). Table 3 contains the data.

Table 3. Aircraft windshield failure

0.046 1.436 2.592 0.140 1.492 2.600 0.150 1.580 2.670 0.248
1.719 2.717 0.280 1.794 2.819 0.313 1.915 2.820 0.389 1.920
2.878 0.487 1.963 2.950 0.622 1.978 3.003 0.900 2.053 3.102
0.952 2.065 3.304 0.996 2.117 3.483 1.003 2.137 3.500 1.010
2.141 3.622 1.085 2.163 3.665 1.092 2.183 3.695 1.152 2.240
4.015 1.183 2.341 4.628 1.244 2.435 4.806 1.249 2.464 4.881
1.262 2.543 5.140

Table 4 shows The WMOPL distribution fits these data better than the
Marshall-Olkin extended Power Lomax, Marshall-Olkin Alpha Power Lomax,
Beta Generalized Weibull, Beta Marshall Olkin Normal.

Table 5 shows the novel distribution fits this data set better than the Type
II Topp- Leone Power Lomax, Exponentiated Power Lomax, Marshall-Olkin
Gumbel Lomax, and Kumaraswamy Lomax. The goodness-of-fit measures for
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Table 4. The goodness-of-fit measures of considered models
for data set 1.

Model Parameters Estimates -log lik AIC BIC K-S p-value

WMOPL

α 1.1370

196.8414 403.6829 414.6311 0.0962 0.8185
β 0.5475
λ 0.1882
γ 0.2860
σ 0.3842

MOEPL

α 0.8742

216.7913 459.9423 496.2843 0.1088 0.7475
β 0.6901
γ 0.1961
λ 0.2544

MOAPL

α 0.9969

220.91524 550.8389 506.8354 0.1067 0.4406
β 0.6778
θ 0.2016
λ 2.5753

BGW

a 0.1533

230.0527 506.1053 527.1409 0.1275 0.2338
b 0.1150
c 17.0159
α 1.0342
β 11.1016

BMON

a 6.3730

243.0828 2065.363 2081.904 0.1875 0.2413
b 0.5420
c 0.0076
µ 11.1698
σ 41.7503

the fitted WMOPL model and another fitted distributions to both data sets are
presented in Table 4 and Table 5, respectively.

Additionally, we estimate the unknown parameters from data set I and data
set II using the estimating methods outlined. The six methods used to estimate
the WMOPL parameters and the KS and PV values are reported in Tables 6
and 7 for both data sets. The Figures in these tables show that the WMOPL
parameters can be estimated using the OLS technique for data set I and the
WLS method for data set II. All estimating approaches, however, perform well
on both sets of data. Figure 3 displays the histograms and estimated densities
derived from the estimating methods for both data sets. Figure 3 supports the
statistics in Table 6 and Table 7.
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Table 5. The goodness-of-fit measures of considered models
for data set 2.

Model Parameters Estimates -log lik AIC BIC K-S p-value

WMOPL

α 1.8614

60.29747 130.5949 141.3106 0.0806 0.8349
β 1.6281
λ 1.0810
γ 1.3884
σ 1.3782

TIITLPL

θ 213.2225

68.9327 269.0398 269.5461 0.1530 0.6097
α 3.6880
β 1.2282
λ 186.8420

MOGL

p 23.6608

69.04595 206.1838 216.8995 0.09571 0.6911
µ 1.0716
σ 1.6599
α 62.2514
λ 28.1483

EPL

α 7.7389

71.9512 215.6657 224.2383 0.1439 0.7598
β 1.9232
λ 0.0118
c 7.7389

KWL

a 1.6991

60.4338 209.7353 218.3078 0.09332 0.4285
b 60.5673
α 2.5649
β 65.0640

Table 6. The parameter estimations for data set 1 using vari-
ous approaches, KS statistics, and the accompanying p-values.

Method α̂ β̂ λ̂ γ̂ σ̂ -log lik AIC BIC K-S p-value
OLS 1.1370 0.5475 0.1882 0.2860 0.3842 196.8414 403.6829 414.6311 0.0962 0.8185
WLS 1.2201 0.4964 0.2624 0.7325 0.6107 136.1586 282.3172 293.2655 0.1002 0.7801
CME 1.2743 47.2702 1.2246 0.0269 0.1306 270.3152 550.6304 561.5787 0.1057 0.7230
MPS 3.3130 3.5847 2.8739 3.5716 3.6499 258.6457 527.2914 538.2397 0.1116 0.6603
ADE 0.8542 2.0043 0.1169 0.9405 1.7210 307.2467 624.4933 635.4416 0.1230 0.5394
MLE 0.8542 2.0043 0.1169 0.9405 0.5394 346.1392 682.2784 713.2267 0.1453 0.3346

Table 7. The parameter estimations for data set 2 using vari-
ous approaches, KS statistics, and the accompanying p-values.

Method α̂ β̂ λ̂ γ̂ σ̂ -log lik AIC BIC K-S p-value
OLS 1.6583 1.4412 1.4287 1.1528 1.1073 74.40548 158.811 169.5266 0.101424 0.705342
WLS 1.8614 1.6281 1.0810 1.3884 1.3782 60.29747 130.5949 141.3106 0.080688 0.834944
CME 1.6805 1.1406 1.4513 1.2467 1.0084 103.8194 217.6387 228.3544 0.129268 0.123738
MPS 1.5961 1.3293 1.5068 1.2179 0.9481 87.51124 185.0225 195.7381 0.11326 0.568848
ADE 1.2454 1.4915 1.4011 1.6754 1.4499 85.17651 180.353 191.0687 0.104908 0.658069

ne MLE 0.8968 0.8042 0.6443 0.8680 0.4757 173.327 356.6541 367.3697 0.160465 0.145761
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(a) (b)

Figure 3. The fitted densities of the WMOPL distribution for
different methods for data set 1 (a) and data set 2 (b).

7. Conclusions

We introduce the five-parameter Weibull Marshall–Olkin Power Lomax
(WMOPL) distribution, which contains some well-known distributions as unique
models. The WMOPL failure rate function can analyze lifetime data efficiently.
The novel distribution can substitute for various generalized forms of the Power
Lomax and Weibull distributions. Some statistical properties of the proposed
model such as the quantiles function, moments, mean residual life and mean de-
viations, variance, skewness, kurtosis, and reliability measures like the residual
life function, reversed residual life functions, and stress-strength reliability, are
discussed. The model parameters are estimated by the six methods including
Maximum likelihood, Ordinary least squares, Weighted least squares, Cramer-
Von Mises, Maximum product of spacing, and Anderson–Darling methods, and
a simulation study is conducted to assess the performance of the various esti-
mators. We demonstrate that the proposed distribution can provide better fits
and flexibility than other distributions through two applications to real data.
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30. M.Ç. Korkmaz and et al., The Weibull Marshall-Olkin family: Regression model and

application to censored data, Communications in Statistics-Theory and Methods 48 (2019),
4171-4194.

31. K. Kwan and et al., Kinetics of indomethacin absorption, elimination, and enterohepatic

circulation in man, Journal of Pharmacokinetics and Biopharmaceutics 4 (1976), 255-280.
32. A.J. Lemonte and G.M. Cordeiro, An extended Lomax distribution, Statistics 47 (2013),

800-816.

33. A.W. Marshall and I. Olkin, A new method for adding a parameter to a family of dis-
tributions with application to the exponential and Weibull families, Biometrika 84 (1997),

641-652.

34. T. Moltok, H. Dikko and O. Asiribo, A transmuted Power Lomax distribution, African
Journal of Natural Sciences (AJNS) 20 (2019).

35. D.P. Murthy, M. Xie and R. Jiang, Weibull models, John Wiley & Sons, 2004.

36. J. Myhre and S. Saunders, Screen testing and conditional probability of survival, Lecture
Notes-Monograph Series (1982), 166-178.

37. V.B. Nagarjuna, R.V. Vardhan and C. Chesneau, Kumaraswamy generalized power lomax

distributionand its applications, Stats. 4 (2021), 28-45.
38. V.B. Nagarjuna, R.V. Vardhan and C. Chesneau, On the accuracy of the sine Power lomax

model for data fitting, Modelling 2 (2021), 78-104.
39. E.E. Nwezza and F.I. Ugwuowo, The Marshall-Olkin Gumbel-Lomax distribution: prop-

erties and applications, Heliyon 6 (2020), 03569.

40. A.A. Ogunde and et al., Harris Extended Power Lomax Distribution: Properties, Inference
and Applications, International Journal of Statistics and Probability 10 (2021), 1-77.

41. I. Okorie and et al., The modified power function distribution, Cogent mathematics 4

(2017), 1319592.
42. B. Punathumparambath, Estimation of P (X > Y ) for the double Lomax distribution, In

Probstat forum, 2011.

43. E.-H.A. Rady, W. Hassanein and T. Elhaddad, The power Lomax distribution with an
application to bladder cancer data, SpringerPlus 5 (2016), 1-22.

44. M. Rajab and et al., On five parameter beta Lomax distribution, Journal of Statistics 20

(2013).
45. M.W.A. Ramos and et al., The exponentiated Lomax Poisson distribution with an appli-

cation to lifetime data, Advances and Applications in Statistics 34 (2013), 107.
46. N. Singla, K. Jain and S.K. Sharma, The beta generalized Weibull distribution: properties

and applications, Reliability Engineering & System Safety 102 (2012), 5-15.

47. M.A. Ul Haq and et al., Marshall-Olkin power Lomax distribution for modeling of wind
speed data, Energy Reports 6 (2020), 1118-1123.

Elham Moradi received M.Sc. from the Alzahra University, Tehran, Iran, in 2015. She
is currently a Ph.D. student at Central Tehran Branch, Islamic Azad University, Tehran,

Iran. Her research interests are in distribution theory.



A Novel Weibull Marshall-Olkin Power Lomax Distribution 1301

Department of Statistics and Mathematics, Central Tehran Branch, Islamic Azad Univer-

sity, Tehran, Iran.
e-mail: elhamoradi68@gmail.com

Zahra Shokooh Ghazani is an Assistant Professor in Statistics at Central Tehran Branch,

Islamic Azad University, Tehran, Iran. She got her B.Sc., in Applied Mathematics from
Mazandaran university, in1993. She received his M.Sc. in Statistics from Ferdowsi University

of Mashhad, in 1995 and she received his Ph.D. degree in Statistics from Science and
Research Branch, IAU, in 2003. She is a member Iran Statistical Society. Her research

interests are in the areas of distribution theory and probability theory.

Department of Statistics and Mathematics, Central Tehran Branch, Islamic Azad Univer-
sity, Tehran, Iran.

e-mail: Zah.Shokooh Ghazani@iauctb.ac.ir




