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Abstract – An adaptive extended Kalman filter based on the maximum likelihood (EKF-ML) is 
proposed for detecting voltage sag in this paper. Considering that the choice of the process and 
measurement error covariance matrices affects seriously the performance of the extended Kalman filter 
(EKF), the EKF-ML method uses the maximum likelihood method to adaptively optimize the error 
covariance matrices and the initial conditions. This can ensure that the EKF has better accuracy and 
faster convergence for estimating the voltage amplitude (states). Moreover, without more complexity, 
the EKF-ML algorithm is almost as simple as the conventional EKF, but it has better anti-disturbance 
performance and more accuracy in detection of the voltage sag. More importantly, the EKF-ML 
algorithm is capable of accurately estimating the noise parameters and is robust against various noise 
levels. Simulation results show that the proposed method performs with a fast dynamic and tracking 
response, when voltage signals contain harmonics or a pulse and are jointly embedded in an unknown 
measurement noise. 
 

Keywords: Voltage sag, Adaptive estimation, The extended Kalman filter, The maximum likelihood 
method, Wavelet transform  

 
 
 

1. Introduction 
 
Power quality (PQ) problems can be described as any 

disturbance in the electrical power supply such as voltage 
sag, swell and the presence of harmonics, which can 
result in failure or mal-operation of customer’s equipment. 
Voltage sag, which refers to the reduction of RMS (root 
mean square) voltage, has become one of the most 
common power quality problems and accounts for the vast 
majority of problems experimented by end users. Thus, 
the fast detection and analysis of the voltage sag have 
been a major research concern of power engineers in 
recent years. 

The voltage sag is characterized by their magnitude 
and duration. A wide variety of signal processing methods 
have been presented to detect the voltage sag, such as 
wavelet transform (WT) [1-2] and Kalman filter (KF) [3-4]. 
The WT technique provides a powerful tool for analyzing 
localized variations of power signals, and can be used to 
detect and localize voltage sag by decomposing a power 
signal into time-frequency space. Also, it can estimate the 
harmonic components in power system. Recently, Con-
sidering the effect of different combinations of disturbances, 
a hybrid discrete WT is proposed to detect the voltage sag 
in harmonics and flicker [5]. Although the WT method 

shows good results in detection of the voltage sag, it exhibits 
some disadvantages, such as complicated computation, 
sensitivity to noise level, and the dependency of its accuracy 
on the selection of mother wavelet. To overcome some of 
the above drawbacks, the S-transform (ST) uses a variant 
window length according to Fourier transform Kernel, 
which makes it obtain more accurate time resolution in 
high frequency parts and more frequency resolution in low 
frequency parts [6]. However, they also suffer from leakage 
effects and inaccuracies in the presence of noise with low 
signal-to-noise ratio (SNR). Moreover, all these time 
frequency-domain methods can’t perform accurately for 
detection of sudden or fast changes in waveform, e.g. the 
power signal containing a pulse. 

For accurate detection of the voltage sag, the Kalman 
filter approach based on time-domain, which is known to 
be simple and robust, attracts many attentions as it can 
estimate accurate amplitude, phase and frequency of the 
fundamental and harmonic components of a signal 
disturbed by white noise. However, the choice of the 
noise covariance matrices, which include the measurement 
noise covariance matrix R and the process noise 
covariance matrix Q, is crucial in KF algorithm [7-9]. For 
the optimal choice of the noise covariance matrices, 
various improved KF algorithms have been applied to 
power system harmonic state estimation. For example, 
considering the uncertainty of the process noise covariance 
matrix, Yu [10] proposed an adaptive Kalman filter method 
in which two basic Q models can be switched for steady-
state and transient estimation. As a comparison, Shih and 
Huang [11] adjusted the measurement noise parameter R  
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instead of Q to increase the robustness of the EKF method. 
For accurate analysis of harmonic content and fundamental 
frequency, Kennedy [12] employed an adaptive KF 
algorithm by adopting a methodical approach to choosing 
the noise covariance matrices R and Q simultaneously. 
Also, Zhang [13] developed an adaptive Kalman filter 
with inflatable noise variances, which can efficiently 
indentify and reduce the impact of incorrect system 
modeling and erroneous measurements. Recently, for the 
optimal choice of error covariance matrices R and Q, 
Jatoth [14] proposed adaptive genetic algorithm-adaptive 
particle swarm optimization (GA-APSO) aided unscented 
Kalman filter to estimate harmonic components. All these 
research results show the above adaptive KF techniques 
are superior to the conventional KF algorithms, but most of 
these adaptive algorithms may require heavy computational 
outlay and can’t provide good robustness with respect to 
various noise levels. Moreover, the practical unknown 
measurement noises will slow the rate of convergence 
and make the estimation results inaccurate or even 
diverging. Thus, the error covariance matrices R  and Q 
must be estimated as unknown parameters in a practical 
situation. 

In statistics, maximum likelihood (ML) estimation is a 
well-known method of estimating the parameters of a 
statistical model given data, which was analyzed and 
vastly popularized by Fisher [15]. In general, for a fixed 
set of data and underlying statistical model, the method of 
maximum likelihood selects the set of values of the model 
parameters that maximizes the likelihood function. 
Intuitively, this maximizes the “agreement” of the selected 
model with the observed data, and for discrete random 
variables it indeed maximizes the probability of the 
observed data under the resulting distribution, such as 
the normal (Gaussian) distribution. Maximum likelihood 
parameter estimation has been widely applied to many 
fields [16-17]. 

In this paper, a more robust and adaptive EKF algorithm 
is proposed for detection of voltage sag, which combines 
the EKF and the ML (EKF-ML). In the EKF-ML method, 
the maximum likelihood (ML) method is used to adaptively 
optimize the error covariance matrices R, Q and the 
initial conditions as the parameters, and the EKF is used 
to estimate the voltage amplitude (states) simultaneously. 
Hence, the EKF-ML algorithm makes the observed 
results the most probable given the model and can obtain 
better performance relative to the conventional EKF (The 
conventional EKF assumed parameter values of the error 
covariance matrices as specified values). Another 
advantage of this algorithm is that it almost has the same 
computational complexity as the conventional EKF. Thus, 
the EKF-ML algorithm is simpler and less complex than 
other adaptive algorithms, such as the adaptive unscented 
Kalman filter algorithm [18], the unscented Kalman 
smoother algorithm [19] and adaptive particle swarm 
optimization (GA-APSO) aided unscented Kalman filter 

[14]. All in all, the EKF-ML algorithm can accurately 
estimate the amplitudes of the voltage signals, and has 
fast response to the voltage sag even though the voltage 
signal is highly distorted by harmonics or a pulse and 
Gaussian noise with various SNR. What’s more, the 
proposed adaptive EKF algorithm is capable of accurately 
estimating the noise parameters and is robust against 
various noise levels. 

The main contribution of this paper is that the use of the 
maximum likelihood (ML) method to adaptively optimize 
the error covariance matrices R, Q and the initial conditions 
as the parameters, which can make sure that the EKF has 
better accuracy and faster convergence. 

The remainder of the paper is organized as follows. In 
Section 2, we propose the state space model of the power 
signal. Section 3 describes the EKF-ML method. Section 
4 presents simulation studies of the EKF-ML, the 
conventional EKF and the WT. Some concluding remarks 
are contained in Section 5.  

 
 

2. The State Space Model of the Power  
Signal 

 
The discrete power signal is usually made up of a 

fundamental component plus some harmonic components 
and noise. Therefore, a typical power system observed 
signal can be expressed as 
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where ky  is the observed signal, and 1,kA , ω , 1ϕ  
denote the amplitude, angular frequency and initial phase 
angle of the fundamental component, respectively, and 

, ( 2, , )r kA r M= , rϕ  denote the amplitude and initial 
phase angle of the rth harmonic component. kv  represents 
a zero-mean white noise with unknown covariance 

( )TE k k kv v R= . M  is the  highest order of the harmonic 
component, and sT  is the sampling interval, which can be 
obtained as 1/ sf  ( sf  is the sampling frequency). 
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By considering state variables above, model (1) can be 

rewritten in the form of state space as follows 
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  (3) 
 
Here, F, H denote the system matrix and the observation 

matrix, respectively. kη  and kv  are the process noise and 
the observation noise , which are zero-mean Gaussian 
random variables with covariance kQ  and kR , 
respectively. And the matrices rF , H , kQ , kR  are 
defined as 
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In Eq. (4), all the unknown constant parameters 

( 1 2 2 1 2, , , , ,M Mγ γ γ γ ε− ) should be optimized. 
Thus, the amplitude of each frequency component can 

be calculated as 
 

 ( ) ( )2 2
, 2 1, 2 ,r k r k r kA x x−= +  (5) 

 
Where 2 1,r kx − , 2 ,r kx  can be obtained as estimated states 

from model (3). 
 
 

3. The EKF-ML Method 
 
The purpose here is to determine all the unknown 

constant parameters and to estimate the state kX  from the 
noisy observations using model (3). This is a type of 
nonlinear filtering problem, for which we use the EKF to 
estimate the state from the noisy observations. However, 
the practical application of the EKF has been limited by the 
difficulties in selecting the process noise parameter kQ  
and the observation noise parameter kR , which affects 
seriously the rate of convergence and the estimation 
performance. Thus, to obtain the best estimation, it is 
proposed in this paper to use the maximum likelihood 
method for the optimal choice of the noise covariance 
matrices kQ  and kR .  

3.1 State estimation by the extended Kalman filter 
 
Let | 1

ˆ
k k −X , | 1k k −S  denote the conditional mean and 

conditional covariance of kX  given { }1: 1 1 1, ,k ky y y− −= , 
ˆkv  be the predicted innovation of ky . Therefore, the 

prediction equations using the recursive extended Kalman 
filter may be given as follows 
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Let |

ˆ
k kX , |k kS denote the conditional mean and 

conditional covariance of kX  given { }1: 1, ,k ky y y= , 
Ψ̂k  be the covariance of kv , then the filtered state is 
given as 
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3.2 Parameter estimation by the maximum likelihood 

 
In Eqs. (6)-(7), except for the constant parameters 

1 2 2 1 2, , , , ,M Mγ γ γ γ ε− , the initial state 0|0X  and the 
initial conditional variance 0|0 1 2 2 1 2([ ])M Mdiag s s s s−=S  
also need to be estimated. So the parameters to be 
estimated are ( )1 2 1,0 2 , 10 2, , , , ,θ , ,, ,M MMx sx sγ γ ε= . 
Assuming kv  is a Gaussian white noise vector with 
covariance Ψk , then the joint conditional density of kv  
may be written as 
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where •  denotes the determinant.  

In the second equation of model (3), the innovation kv  
and the observation ky  are Gaussian random variables 
with the same variance but different means. Therefore, (-2) 
log-likelihood of model (3) may be derived from Eq. (8) as 
follow 
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where N represents sampling length. 
From the estimated innovation ˆkv  and its covariance 

Ψ̂k  with respect to the given parameters θ , the optimal 
parameters *θ  may be obtained by minimizing the (-2) 
log-likelihood function (9) as follow 

 

( ) ( ) ( ){ }1T*

θ 1

ˆ ˆˆ ˆθ arg min log (θ) (θ) (θ) (θ)

log 2
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In this paper, the function “FMINSEARCH” based on 

the Nelder-Mead method in the MATLAB Optimization 
Toolbox is used to carry out the parameter optimization 

 
 

4. Simulations 
 
To verify the superiority of the proposed algorithm, the 

conventional EKF, the WT and the proposed EKF-ML are 
used to detect voltage sag with three kind of simulated 
signals. The first signal is a pure sinusoidal signal distorted 
with voltage sag in presence of additive white Gaussian 
noise. On the basis of the first signal, the second and the 
third add a transient pulse and higher order harmonics, 
respectively.  

 
Case 1. A pure sinusoidal signal contaminated noises  

 
The source voltage in this case takes the following 

waveform equation: 
 

 cos(2 )t t ty E ft vπ ϕ= + +  (11) 
 
Here, the fundamental frequency f and the voltage 

amplitude tE  are assumed 50Hz ( 50f = Hz) and 1pu 
( 1tE = p.u), respectively. Also, constant phase ϕ  and 
sampling time Ts are 0rad ( 0ϕ = rad) and 100µs 
( 100sT = µs) respectively. tv  represents a Gaussian white 
noise with signal-to-noise ratio (SNR) values of 40dB, 
30dB and 20dB, which means the Gaussian white noise 
has 0.01p.u, 0.0316p.u and 0.1p.u standard deviation, 
respectively. In this simulation, when the voltage sag 
occurs, fundamental amplitude drops to 0.5p.u, and the 
time of variation amplitude is considered as below: 
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Obviously, the time when the voltage sag occurs is from 

0.05s to 0.12s in Eq. (12). 
Fig. 1 shows the observed sinusoidal signals with 

changes in noise and the clean sinusoidal signal without 
noise. Figs. 2-4 show comparisons of the actual vs. 
estimated results in terms of the amplitude and the signal 

using the proposed EKF-ML and the conventional EKF 
algorithms at 40 dB, 30 dB and 20 dB SNR’s noise, 
respectively. Table 1 gives comparisons of the actual 
parameter ε  vs. the estimated parameter by the EKF-ML. 
For testing the performance of WT, daubechies discrete 
wavelet of order 4 (db4) is used for PQ disturbance signal 
analysis because daubechies wavelets are the family of 
orthogonal wavelets and the db4 exhibits more efficient in 
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Fig. 1. The observed sinusoidal signals and the clean 

sinusoidal signal ( 1, 2, 3,, , ,t t t ty y y y  denote the clean 
signal without noise and the observed signals 
disturbed with SNR values of 40 dB, 30 dB and 20 
dB, respectively). 
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Fig. 2. The estimated signal and amplitude using the EKF-
ML and the EKF at 40 dB SNR’s noise. 
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feature extraction. Firstly, the observed signal is denoised 
by wavelet threshold to remove random noise from the 
original signal. After denoising, signal can be reconstructed 
using inverse discrete wavelet transform. Then, 4 layer 
daubechies wavelet decomposition is applied to the signal 
that has been denoised. Fig. 5 gives the signal comparisons 
between the actual and the reconstructed after denoising by 
WT. Figs. 6-8 show detail coefficients of four layer WT 
decomposition process. 

At the top of Figs. 2-4, it is clear that the estimated 
signals by the EKF-ML closely match with the actual 
signals in all conditions. Also, the estimated amplitudes 
changing in time by the EKF-ML are very close to the 
actual amplitudes in all situations, although the former 
have slight fluctuations around the latter. On the other 
hand, under the conditions of 40 dB and 30 dB SNR, the 
estimated signals by the EKF match with the actual signals 

as closely as the EKF-ML. However, when SNR value 
drops to 20 dB, the estimated signals by the EKF deviate 
appreciably from the actual signals. In terms of the 
estimated amplitudes, the EKF has relatively worse 
accuracy than the EKF-ML, especially when the voltage 
sag occurs. As shown in Figs. 2-4, in every case, the 
EKF-ML algorithm can detect the voltage sag in real time 
and has fast response to the voltage sag. Instead, the EKF 
exhibits a long response time. By comparing Figs. 2-4, as 
SNR value decreases from 40dB to 20 dB, there are more 
deviations of the estimated value from the actual values, 
and the estimated amplitude fluctuations slowly become 
great for the two methods. This result shows that the noise 
strength slightly affects the estimated performance of the 
two methods in the case of a pure sinusoidal signal. In 
Table 1, it can be seen that the values of the estimated 
parameter ε  by the EKF-ML are very close to the actual 
values in all conditions, while the conventional EKF needs 
a given noise parameter value. Thus, the accurate estimation 
of the observation noise covariance matrix can further ensure 
that the EKF has better accuracy and faster convergence. 
This also verifies the effectiveness and the accuracy of the 
proposed algorithm. 

In Fig. 5, we can see the SNR of the reconstructed signal 

 
Table 1. The estimated parameter ε  with the EKF-ML 

Noise Case 1 Case 2 Case 3 Actual 
40 dB 0.00958 0.00970 0.0107 0.0100 
30 dB 0.0321 0.0297 0.0313 0.0316 
20 dB 0.0986 0.101 0.100 0.100 

Note: Case 1, Case 2, and Case 2 represent three kinds of signals 
generated by model (11), model (13) and model (14) respective
ly in Tables 1-3. Furthermore, each kind of signal (Case 1, Ca
se 2, or Case 2) is disturbed by the white noise with three dif
ferent levels, namely, 40 dB, 30 dB, 20 dB. 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1.5

-1

-0.5

0

0.5

1

1.5

y t (p
.u

)

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

Sampling points

E
t (

p.
u)

 

 

EKF-ML EKF Actual

EKF-ML EKF Actual

 
Fig. 4. The estimated signal and amplitude using the EKF-

ML and the EKF at 20 dB SNR’s noise 
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by WT has been improved and denoising effect is relatively 
obvious. However, the reconstructed signals by the WT 
deviate appreciably from the actual signals, especially in 
the vicinity of sample points 500 and 1200, in which the 
voltage sag occurs. From this point, the estimated signals 
by the EKF-ML shown in Figs. 2-4 match the clean (actual) 
signals better than the reconstructed signal by WT shown 
in Fig. 5. As see from Figs. 6-7, the wavelet coefficients 
d3, d4 reach peaks at the start and end of the voltage sag, 
while the wavelet coefficients in Fig. 8 appear obvious 
oscillations and do not give significant peaks at the start and 
end of the voltage sag. This underlines that the performance 
of db4 to detect voltage sag becomes worse with signal 
noise ratio decreasing. Thus, compared with the EKF-ML, 
the WT can’t give precise and quick response to voltage sag 
when the signals are heavily contaminated by random noise. 

To compare the performance of the proposed method 
with the conventional EKF approach and the WT method, 
the RMSE (root mean square error) values of the estimated 
waveform (or the reconstructed signals) with respect to 
the actual waveform without noise are computed and 
compared in Table 2. Also, Table 3 lists the running time 
for the EKF-ML and EKF methods. It is clear that the 
RMSE values of the EKF-ML in every case are lower than 
those of the EKF and much lower than those of the WT. 
Moreover, with decreasing SNR, the RMSE value of the 
EKF-ML is lower and lower than that of the EKF. Instead, 

the RMSE value of the WT changes only a little with 
decreasing SNR. All this indicates that the EKF-ML can 
obtain better estimation performance than the conventional 
EKF and the WT. Moreover, this demonstrates the WT 
method is not enough fine in time domain and has bad time 
resolution. In Table 3, we can conclude that the EKF-ML 
and EKF methods have relatively short running time even 
though the running time of the EKF shortens greatly. 

 
Case 2. Signal contaminated with a pulse and a gaussian 

noise 
 
In this case, the signal used for the estimation, besides 

the fundamental frequency, contains a pulse and is 
simultaneously disturbed with a Gaussian white noise. This 
kind of signal is considered as follow 

 

10
cos(2 ) 0s 0.0803s and 0.0823s 0.15s
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t
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ft v t t
y

ft e v t
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  (13) 
 
Here, the fundamental frequency, the constant phases 

ϕ , the sampling time sT  and the noise tv  are the same as 
Case 1.  

Fig. 9 shows the observed signals, which are contaminated 
with a pulse and a Gaussian noise, and the clean signal 
without noise but with a pulse. In Fig. 9, we can clearly see 
a sudden and small change in the waveform. Figs. 10-12 
show comparisons of the estimated signals and amplitudes 
vs. the actual signals and amplitudes under different 
conditions. Fig. 13 gives the signal comparisons between 
the actual and the reconstructed after denoising by WT. 
Figs. 14-16 show detail coefficients of four layer WT 
decomposition process. The estimated parameter ε  by the 
EKF-ML is given in Table 1. 

In the upper part of Figs.10-12, the estimated signals by 
the EKF-ML can track the actual signals accurately except  
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Fig. 9. The observed signals and the clean signal 

( 1, 2, 3,, , ,t t t ty y y y denote the clean signal and the 
observed signals disturbed with SNR values of 40 
dB, 30 dB and 20 dB, respectively) 
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Table 2. The RMSE for the EKF-ML and the EKF under 
three conditions 

Case Method Noise 1 
40dB 

Noise 2 
30dB 

Noise 3 
20dB 

EKF-ML 0.0182 0.0248 0.0432 
EKF 0.0193 0.0260 0.0641 Case 1 
WT 0.0648 0.0656 0.0811 

EKF-ML 0.0109 0.0174 0.0258 
EKF 0.0110 0.0216 0.0381 Case 2 
WT 0.0382 0.0415 0.0625 

EKF-ML 0.0246 0.0335 0.0534 
EKF 0.0252 0.0403 0.0838 Case 3 
WT 0.2477 0.2479 0.2583 
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Fig. 10. The estimated signal and amplitude using the 

adaptive EKF at 40 dB SNR’s noise 
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Fig. 11. The estimated signal and amplitude using the 

adaptive EKF at 30 dB SNR’s noise 
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Fig. 12. The estimated signal and amplitude using the 

adaptive EKF at 20 dB SNR’s noise 
 

that there are small deviations of the estimated value from 
the actual value in the case of 20 dB SNR. In the lower part 
of Figs. 10-12, the proposed EKF-ML algorithm can 
accurately capture the pulse, and the estimated amplitudes 
roughly match the actual amplitudes in all conditions. 
Obviously, when a pulse occurs in these conditions of 40 
dB and 30 dB SNR, the EKF-ML algorithm can fast and 
accurately track the rising edge, but it exhibits relatively 
long response time in tracking the falling edge. Although 
the estimated peak is lower than the actual peak in the 
condition of 20 dB SNR, the response speed is as fast as 
the former two. As for the EKF, the estimated signals 
match with the actual signals as closely as the EKF-ML, 
but the accuracy of estimated amplitudes is lower than that 
of the EKF-ML, especially when a pulse occurs. In Fig. 13, 
we can see the SNR of the reconstructed signal by WT has 
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Fig. 13. The denoised and reconstructed signals by the WT 
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Fig. 14. Four layer daubechies wavelet decomposition at 

40 dB SNR 
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Fig. 15. Four layer daubechies wavelet decomposition at 

30 dB SNR 
 

been greatly improved and denoising effect is obvious. The 
reconstructed signals by the WT match the actual signals 
well, except when a pulse occurs. From this point, the 
reconstructed signal by WT shown in Fig. 13 match the 
clean (actual) signals as well as the estimated signals by 
the EKF-ML shown in Figs 10-12. As see from Fig. 14, the 
wavelet coefficients d2, d3 reach small peaks in the 
vicinity of a pulse, while the wavelet coefficients in Figs. 
15-16 appear obvious oscillations and do not give 
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significant peaks at the start and end of the voltage sag (a 
pulse). This underlines that the WT (db4) can’t perform 
accurately for detection of sudden or fast changes in 
waveform e.g. transient or a pulse. Also, the performance 
of db4 to detect voltage sag becomes rather worse with 
signal noise ratio decreasing and deteriorates greatly 
compared with the EKF-ML. In Table 1, we can see that 
the values of the estimated parameter ε  are very close to 
the actual values in all conditions, which is the same as 
Case 1.The RMSE values shown in Table 2 also indicate 
the EKF-ML is superior to the EKF and the WT. 

 
Case 3. Signal contaminated with harmonics and noises 

 
In this case, the signal used for the estimation, besides 

the fundamental frequency, contains higher harmonics of 
the 3 rd, 5rd and is simultaneously contaminated with a 
Gaussian white noise. This kind of signal is represented as 
follow 
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Here, the fundamental frequency, the sampling time sT  
and the noise tv  are the same as Case 1, and the constant 
phases ( 1,3,5)i iϕ =  are assumed 0rad. The voltage 
amplitudes , ( 1,3,5)i tE i =  are considered as follows 
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In Eq. (15), the time when the voltage sag of the 

fundamental frequency occurs is from 0.08s to 0.12s, and 
the time when the perturbations of the harmonics occur is 
from 0.04s to 0.16s. 

Fig. 17 shows the observed signals, which are 
contaminated with harmonics and noises, and the clean 
signal without noise. Figs. 18-20 show comparisons of the 
estimated signals and amplitudes vs. the actual signal and 
amplitude for the two methods as the SNR decreases from 
40dB to 20dB. Fig. 21 gives the signal comparisons 
between the actual and the reconstructed after denoising by 
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Fig. 16. Four layer daubechies wavelet decomposition at 

20 dB SNR 
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Fig. 17. The observed signals and the clean signal

( 1, 2, 3,, , ,t t t ty y y y  denote the clean signal and the 
observed signals disturbed with SNR values of 40 
dB, 30 dB and 20 dB, respectively) 
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Fig. 18. The estimated signals and amplitudes using the 

adaptive EKF at 40 dB SNR’s noise ( 1,tE , 3,tE , 

5,tE denote the amplitudes of the fundamental 
frequency, the 3rd harmonic and the 5th harmonic, 
respectively) 
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Fig. 19. The estimated signals and amplitudes using the 

adaptive EKF at 30 dB SNR’s noise 
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WT. Figs. 22-24 show detail coefficients of four layer WT 
decomposition process. The estimated parameter ε  by the 
EKF-ML is given in Table 1. 

In Figs. 18-20, as for the EKF-ML, the estimated signals 
closely match the actual signal in all conditions even 
though the observed signals contain the 3rd, 5th harmonics 
and are simultaneously contaminated with various noise. 
Also, the estimated amplitudes of the fundamental frequency 
are all very close to the actual amplitude of the fundamental 
frequency, and the response to the voltage sage is very 
fast and accurate in terms of the fundamental frequency. 

The EKF-ML algorithm also can successfully detect the 
harmonics and accurately estimate the amplitudes of the 
harmonics, although it exhibits some delay in tracking the 
falling edge relative to the fundamental frequency. By 
comparing Figs. 18-20, as SNR value decreases from 40dB 
to 20 dB, the estimated amplitude fluctuations gradually 
become great. This increase in amplitude fluctuation is 
approximately consistent with that of Case 1, but only it 
fluctuates acutely relative to Case 1. 

However, as shown in Fig. 21, the reconstructed signals 
by the WT deviate appreciably from the actual signals 
because of harmonics interference. In Figs. 22-23, the 
wavelet coefficients d2, d3 just reach small peaks at the 
start and end of the voltage sag and harmonics interference, 
while the wavelet coefficients in Fig. 24 appear obvious 
oscillations and do not give significant peaks at the start 
and end of the voltage sag when the SNR drops to 20dB. 
This shows the performance of db4 to detect voltage sag 
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Fig. 20. The estimated signals and amplitudes using the 

adaptive EKF at 20 dB SNR’s noise 
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Fig. 21. The denoised and reconstructed signals by the WT
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Fig. 22. Four layer daubechies wavelet decomposition at

40 dB SNR 

Table 3. The running time of different algorithms (Unit: 
second) 

Method Case 1 Case 2 Case 3 
EKF 0.0754 0.0754 0.0914 

EKF-ML 4.96 4.87 22.4 
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Fig. 23. Four layer daubechies wavelet decomposition at 

30 dB SNR 
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Fig. 24. Four layer daubechies wavelet decomposition at 

20 dB SNR
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becomes worse with signal noise ratio decreasing. Also, 
compared with the EKF-ML, the WT can’t give precise 
and quick response to voltage sag when the signals are 
heavily contaminated by random noise and harmonics. 

As for the EKF, the estimated signals fit the actual signal 
as well as the EKF-ML except in cases of 20 dB SNR, 
but the estimated amplitudes of the fundamental frequency 
are less accurate than those of the EKF-ML. In terms of 
the estimated harmonic amplitudes, the two methods 
demonstrate almost the same performance except that the 
EKF exhibits more fluctuations. The RMSE values shown 
in Table 2 verify the EKF-ML has better estimation 
performance than the EKF. In this case, the running time of 
the EKF-ML shown in Table 3 increases rapidly relative to 
Case 1 and Case 2. This is mainly because the abundant 
harmonics increase the computation complex greatly. 

 
 

5. Conclusion 
 
In this paper, the adaptive EKF algorithm based on the 

ML method is proposed to detect the voltage sag. To 
enhance the estimation performance, the method incorporates 
the extended Kalman filter and the maximum likelihood 
method to estimate the states (the voltage amplitude) and 
noise parameters simultaneously. The complexity of the 
proposed adaptive algorithm is almost the same as the 
EKF, which is simpler and less complex than other 
adaptive algorithms, such as the unscented Kalman 
smoother algorithm and the adaptive particle swarm 
optimization (GA-APSO) aided unscented Kalman filter. 
The EKF-ML algorithm is validated through simulations in 
these conditions of various noise levels. Simulation results 
indicate the proposed adaptive algorithm can detect the 
voltage sag fast and accurately, and can precisely indentify 
the clean signal, even though the duration of transient 
voltage pulse is very short or the voltage signal is highly 
distorted by harmonics and Gaussian noise with various 
SNR. More importantly, the EKF-ML algorithm is capable 
of accurately estimating the noise parameters and is robust 
against various noise levels. The RMSE values indicate 
that the proposed EKF-ML algorithm is superior to the 
conventional EKF and the WT, especially in cases of low 
SNR. Thus, the proposed method is especially appropriate 
for detection of the voltage sag under the condition of 
unknown measurement noise. 
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