• Title/Summary/Keyword: maximum likelihood(ML) detection

Search Result 95, Processing Time 0.031 seconds

Performance analysis of maximum likelihood detection for the spatial multiplexing system with multiple antennas (다중 안테나를 갖는 공간 다중화 시스템을 위한 maximum likelihood 검출기의 성능 분석)

  • Shin Myeongcheol;Song Young Seog;Kwon Dong-Seung;Seo Jeongtae;Lee Chungyong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.103-110
    • /
    • 2005
  • The performance of maximum likelihood(ML) detection for the given channel is analyzed in spatially multiplexed MIMO system. In order to obtain the vector symbol error rate, we define error vectors which represent the geometrical relation between lattice points. The properties of error vectors are analyzed to show that all lattice points in infinite lattice almost surely have four nearest neighbors after random channel transformation. Using this information and minimum distance obtained by the modified sphere decoding algorithm, we formulate the analytical performance of vector symbol error over the given channel. To verify the result, we simulate ML performance over various random channel which are classified into three categories: unitary channel, dense channel, and sparse channel. From the simulation results, it is verified that the derived analytical result gives a good approximation about the performance of ML detector over the all random MIMO channels.

Low Complexity Noise Predictive Maximum Likelihood Detection Method for High Density Perpendicular Magnetic Recording: (고밀도 수직자기기록을 위한 저복잡도 잡음 예측 최대 유사도 검출 방법)

  • 김성환;이주현;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.562-567
    • /
    • 2002
  • Noise predictive maximum likelihood(NPML) detector embeds noise predictions/ whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This paper shows that NP(1221)ML system through noise predictive PR-equalized signal has less complexity and better performance than high order PR(12321)ML system in high density perpendicular magnetic recording. The simulation results are evaluated using (1) random sequence and (2) run length limited (1,7) sequence, and they are applied to linear channel and nonlinear channel with normalized linear density $1.0{\leq}K_p{\leq}3.0$.

Implementation of Noise Predictive Maximum Likelihood Detector in High Density Perpendicular Magnetic Recording (고밀도 수직자기기록에서 잡음 예측 최대 유사도 시스템에 대한 검출기 구현)

  • 김성환;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3C
    • /
    • pp.336-342
    • /
    • 2003
  • Noise predictive maximum likelihood(NPML) detector embeds noise prediction/whitening process in branch metric calculation of Viterbi detector and improves the reliability of branch metric computation. Therefore, PRML detector with a noise predictor achieves some performance improvement and has an advantage of low complexity. This thesis random sequences are applied to linear channel. In perpendicular magnetic recording density KP=2.5, NP(121)ML and NP(1221)ML detection system which is based on a noise predictive PR-equalized signal are evaluated by the Performance through a computing simulation. Therefore, NPML systems are implemented and are verified by VHDL.

ML Symbol Detection for MIMO Systems in the Presence of Channel Estimation Errors

  • Yoo, Namsik;Back, Jong-Hyen;Choi, Hyeon-Yeong;Lee, Kyungchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5305-5321
    • /
    • 2016
  • In wireless communication, the multiple-input multiple-output (MIMO) system is a well-known approach to improve the reliability as well as the data rate. In MIMO systems, channel state information (CSI) is typically required at the receiver to detect transmitted signals; however, in practical systems, the CSI is imperfect and contains errors, which affect the overall system performance. In this paper, we propose a novel maximum likelihood (ML) scheme for MIMO systems that is robust to the CSI errors. We apply an optimization method to estimate an instantaneous covariance matrix of the CSI errors in order to improve the detection performance. Furthermore, we propose the employment of the list sphere decoding (LSD) scheme to reduce the computational complexity, which is capable of efficiently finding a reduced set of the candidate symbol vectors for the computation of the covariance matrix of the CSI errors. An iterative detection scheme is also proposed to further improve the detection performance.

Low-Complexity Soft-MIMO Detection Algorithm Based on Ordered Parallel Tree-Search Using Efficient Node Insertion (효율적인 노드 삽입을 이용한 순서화된 병렬 트리-탐색 기반 저복잡도 연판정 다중 안테나 검출 알고리즘)

  • Kim, Kilhwan;Park, Jangyong;Kim, Jaeseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.841-849
    • /
    • 2012
  • This paper proposes an low-complexity soft-output multiple-input multiple-output (soft-MIMO) detection algorithm for achieving soft-output maximum-likelihood (soft-ML) performance under max-log approximation. The proposed algorithm is based on a parallel tree-search (PTS) applying a channel ordering by a sorted-QR decomposition (SQRD) with altered sort order. The empty-set problem that can occur in calculation of log-likelihood ratio (LLR) for each bit is solved by inserting additional nodes at each search level. Since only the closest node is inserted among nodes with opposite bit value to a selected node, the proposed node insertion scheme is very efficient in the perspective of computational complexity. The computational complexity of the proposed algorithm is approximately 37-74% of that of existing algorithms, and from simulation results for a $4{\times}4$ system, the proposed algorithm shows a performance degradation of less than 0.1dB.

Low-Complexity Robust ML Signal Detection for Generalized Spatial Modulation (일반화 공간변조를 위한 저복잡도 강인 최대 우도 신호 검파)

  • Kim, Jeong-Han;Yoon, Tae-Seon;Oh, Se-Hoon;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.516-522
    • /
    • 2017
  • In this paper, we propose a maximum likelihood signal detection scheme for a generalized spatial modulation system that activates only a subset of transmit antennas among multiple antennas and transmits information through the indexes of active antennas as well as through the transmit symbols. The proposed maximum likelihood receiver extracts a set of candidate solutions based on their a posteriori probabilities to lower the computational load of the robust receiver under channel information errors. Then, the chosen candidate solutions are exploited to estimate the covariance matrix of effective noise. Simulation results show that the proposed maximum likelihood detection scheme achieves better error performance than a receiver that does not take into account the channel information errors. It is also seen that it reduces the computational complexity with the same bit error rate performance as the conventional robust maximum likelihood receiver.

A Soft Output Enhancement Technique for Spatially Multiplexed MIMO Systems (공간다중화 MIMO 시스템을 위한 Soft Output 성능향상 기법)

  • Kim, Jin-Min;Im, Tae-Ho;Kim, Jae-Kwon;Yi, Joo-Hyun;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.734-742
    • /
    • 2008
  • In spatially multiplexed MIMO systems that enable high data rate transmission over wireless communication channels, the spatial demultiplexing at the receiver is a challenging task and various demultiplexing methods have been developed. Among the previous methods, maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD), sphere decoding (SD), QOC, and MOC schemes have been reported to achieve a (near) maximum likelihood (ML) hard decision performance. In general, however, the reliability of soft output of these schemes is not satisfactory. In this paper, we propose a method which enhances the reliability of soft output. By computer simulations, we demonstrate the improved performance by the proposed method.

Combined ML and QR Detection Algorithm for MIMO-OFDM Systems with Perfect ChanneI State Information

  • You, Weizhi;Yi, Lilin;Hu, Weisheng
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.371-377
    • /
    • 2013
  • An effective signal detection algorithm with low complexity is presented for multiple-input multiple-output orthogonal frequency division multiplexing systems. The proposed technique, QR-MLD, combines the conventional maximum likelihood detection (MLD) algorithm and the QR algorithm, resulting in much lower complexity compared to MLD. The proposed technique is compared with a similar algorithm, showing that the complexity of the proposed technique with T=1 is a 95% improvement over that of MLD, at the expense of about a 2-dB signal-to-noise-ratio (SNR) degradation for a bit error rate (BER) of $10^{-3}$. Additionally, with T=2, the proposed technique reduces the complexity by 73% for multiplications and 80% for additions and enhances the SNR performance about 1 dB for a BER of $10^{-3}$.

Hybrid SNR-Adaptive Multiuser Detectors for SDMA-OFDM Systems

  • Yesilyurt, Ugur;Ertug, Ozgur
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.218-226
    • /
    • 2018
  • Multiuser detection (MUD) and channel estimation techniques in space-division multiple-access aided orthogonal frequency-division multiplexing systems recently has received intensive interest in receiver design technologies. The maximum likelihood (ML) MUD that provides optimal performance has the cost of a dramatically increased computational complexity. The minimum mean-squared error (MMSE) MUD exhibits poor performance, although it achieves lower computational complexity. With almost the same complexity, an MMSE with successive interference cancellation (SIC) scheme achieves a better bit error rate performance than a linear MMSE multiuser detector. In this paper, hybrid ML-MMSE with SIC adaptive multiuser detection based on the joint channel estimation method is suggested for signal detection. The simulation results show that the proposed method achieves good performance close to the optimal ML performance at low SNR values and a low computational complexity at high SNR values.

Search Space Partitioning-based Receiver for Generalized Spatial Modulation under Channel Information Errors (일반화 공간변조 시스템에서 채널 정보 오차를 고려한 탐색 영역 분할 수신기)

  • Yoon, Hakjoon;Im, Changyong;Lee, Kyungchun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1631-1637
    • /
    • 2019
  • In this paper, we propose a low-complexity robust maximum likelihood (ML) receiver for generalized spatial modulation. The proposed receiver performs the transmit antenna partition to lower the computational loads. After we divide the transmit antenna combinations into two parts, one of which is "the likely TAC part," and the other of which is "the unlikely TAC part", based on the minimum mean square error (MMSE) filtering output. We first perform the maximum likelihood detection only in the likely TAC part. Then we evaluate the reliability of the solution found in the first search, and based its reliability we decide whether we continue the search in the unlikely TAC part. This partitioned search strategy maintains the performance of the conventional robust maximum likelihood receiver and simultaneously lowers computational loads. Through simulation, we found that our newly-proposed receiver achieves considerable gains over the conventional robust ML detector in terms of the computational loads while providing almost the same performance.