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Abstract 
 

In wireless communication, the multiple-input multiple-output (MIMO) system is a 
well-known approach to improve the reliability as well as the data rate. In MIMO systems, 
channel state information (CSI) is typically required at the receiver to detect transmitted 
signals; however, in practical systems, the CSI is imperfect and contains errors, which affect 
the overall system performance. In this paper, we propose a novel maximum likelihood (ML) 
scheme for MIMO systems that is robust to the CSI errors. We apply an optimization method 
to estimate an instantaneous covariance matrix of the CSI errors in order to improve the 
detection performance. Furthermore, we propose the employment of the list sphere decoding 
(LSD) scheme to reduce the computational complexity, which is capable of efficiently finding 
a reduced set of the candidate symbol vectors for the computation of the covariance matrix of 
the CSI errors. An iterative detection scheme is also proposed to further improve the detection 
performance. 
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1. Introduction 

In multiple-input multiple-output (MIMO) systems, multiple antennas are employed at the 
transmitter as well as the receiver. For the same bandwidth and total power, a MIMO system 
typically provides substantial performance gains in terms of the data rate and reliability with 
respect to single-antenna systems [1]. Specifically, higher data rates can be achieved by 
exploiting multiple independent channels between the transmitter and the receiver in order to 
simultaneously send multiple data streams, whereas a higher reliability can be attained by 
sending and receiving replicated signals via multiple antennas. 

The symbol detection performance significantly affects the overall gains of MIMO systems, 
and channel state information (CSI) is typically required at the receiver in order to optimally 
detect symbols. There are various methods to obtain the CSI. As an example, in 
training-symbol-based estimation, the transmitter sends predetermined symbols, which are 
exploited for CSI estimation at the receiver [2–4]. In contrast, in blind channel estimation, the 
covariance matrix of the received signal vectors is exploited to estimate the channel 
coefficients [5]. Moreover, the importance of training sequence design and subspace-based 
channel estimation for MIMO systems is addressed in [6], whereas a concept of staggered 
frame structure for massive MIMO, in which users transmit training pilots at different time, is 
proposed in [7]. However, regardless of the specific channel estimation method, in practical 
systems, the estimation performance cannot be perfect, which causes performance degradation 
in MIMO systems. 

There exist many well-known techniques for detecting transmitted symbols, which include 
the maximum likelihood (ML), zero-forcing (ZF), minimum mean square error (MMSE), and 
successive interference cancellation (SIC) detection schemes [8, 9]. Among these techniques, 
the ML detector provides the best performance in terms of the error probability. However, as 
in the other detection schemes, its detection performance is considerably affected by imperfect 
CSI. To overcome this problem, a robust ML detector was proposed in [10], which utilizes the 
CSI error bound. In [11], the variance of the CSI errors is taken into account to improve the 
performance of the ML detector in the presence of CSI errors. In [12], the optimization of 
symbol detection by joint processing of the training sequences and data symbols is discussed. 

In this paper, a novel ML detection scheme for MIMO systems is proposed. In the proposed 
iterative ML detection (IMLD) scheme, the instantaneous covariance matrix of the noise and 
CSI errors is estimated by considering the probabilities of multiple transmit candidate symbol 
vectors, whereas the published methods [10, 11] use the bound or the long-term statistical 
information of CSI errors. Then, multiple iterations of the estimation of the covariance matrix 
and the computation of the symbol probabilities are conducted to improve the error 
performance. To reduce the computational complexity of the proposed scheme, the iterative 
list sphere decoding (ILSD) scheme is also proposed, which only exploits a list of selected 
symbols for the computation of the instantaneous covariance matrix of the noise plus CSI 
errors. 

Notation : Lower-case bold face lettering denotes column vectors. Capital boldface lettering 
denotes matrices. The symbols (.)T and (.)H represent the transpose and conjugate transpose 
operations, respectively. IN denotes an identity matrix with dimensions of N×N.  
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2. System Model 
The numbers of transmit and receive antennas are assumed to be Nt and Nr, respectively. The 
received signal in the kth symbol interval can be expressed as 
 

yk = Hxk + vk ,     (1) 
 
where xk = [x1, x1, …, xNt]T and yk = [y1, y1, …, yNr]T denote the transmitted and received signals in 

the kth symbol interval, respectively, whereas vk = [v1, v1, …, vNr]T represents the noise signal 
vector, which is assumed to be a zero-mean complex random vector with a covariance matrix 
of σ𝑣𝑣2𝐈𝐈𝑁𝑁𝑟𝑟 . Furthermore, H indicates an Nr×Nt channel matrix consisting of independent 
complex Gaussian random elements. An uncorrelated block Rayleigh fading is assumed [13–
15]. Specifically, H is fixed during K symbol intervals, and it is randomly generated every Kth 
symbol interval.  

To consider CSI errors, as in [11, 13], we express the channel matrix H as 𝐇𝐇 =  𝐇𝐇� + 𝐄𝐄, 
where 𝐇𝐇� is the estimated channel matrix, and E is a matrix of the CSI errors. It is assumed that 
E consists of the instantaneous values of the independent and identically distributed (i.i.d.) 
random variables having zero mean, which is a widely used assumption for CSI errors in 
training-symbol-based estimation [2, 3]. Furthermore, E is assumed to be independent of each 
H, 𝐱𝐱𝑘𝑘, and 𝐯𝐯𝑘𝑘. Then, (1) can be rewritten as 
 

𝒚𝒚𝑘𝑘 = �𝐇𝐇� + 𝐄𝐄�𝐱𝐱𝑘𝑘 + 𝐯𝐯𝑘𝑘 = 𝐇𝐇�𝐱𝐱𝑘𝑘 + 𝐄𝐄𝐱𝐱𝑘𝑘 + 𝐯𝐯𝑘𝑘 = 𝐇𝐇�𝐱𝐱𝑘𝑘 + 𝐯𝐯�𝑘𝑘,        (2) 
 
where 𝐯𝐯�𝑘𝑘 =  𝐄𝐄𝐱𝐱𝑘𝑘 + 𝐯𝐯𝑘𝑘 denotes the effective noise signal that contains the effects of channel 
estimation errors as well as the additive noise. On the basis of the central limit theorem, for 
sufficiently large Nt, 𝐄𝐄𝐱𝐱𝑘𝑘 can be approximately modeled as a Gaussian random vector with 
zero mean, and the proof for its Gaussianity can be carried out by checking the Lindeberg 
condition [16], as given in Appendix A. 
The covariance matrix of the effective noise, 𝐯𝐯�𝑘𝑘, can be expressed as  
 

𝐑𝐑𝐯𝐯�𝑘𝑘 = 𝔼𝔼�𝐯𝐯�𝑘𝑘𝐯𝐯�𝑘𝑘𝐻𝐻� = 𝔼𝔼[(𝐄𝐄𝐱𝐱𝑘𝑘 + 𝐯𝐯𝑘𝑘)(𝐄𝐄𝐱𝐱𝑘𝑘 + 𝐯𝐯𝑘𝑘)𝐻𝐻] 
                    = σ𝑣𝑣2𝐈𝐈𝑁𝑁𝑟𝑟 + 𝜎𝜎𝑥𝑥2𝐄𝐄𝐄𝐄𝐻𝐻,       (3) 

 
where 𝜎𝜎𝑥𝑥2 = 𝔼𝔼[|𝑥𝑥|2] represents the average signal power. 

Here, we note that the estimation of R𝐯𝐯�𝑘𝑘 is equivalent to the estimation of the covariance 
matrix of CSI errors, i.e., 𝜎𝜎𝑥𝑥2𝐄𝐄𝐄𝐄𝐻𝐻, except for the contribution of the noise signal, i.e., σ𝑣𝑣2𝐈𝐈𝑁𝑁𝑟𝑟. 

3. Estimation of the Instantaneous Covariance Matrix 
By using the covariance matrix in (3), the ML detection rule in the presence of CSI errors can 
be expressed as 
 

𝐱𝐱�𝑘𝑘 = arg max
𝐱𝐱𝑘𝑘

1
𝜋𝜋𝑁𝑁𝑡𝑡 det�𝐑𝐑𝐯𝐯�𝑘𝑘�

exp �−
1
2 �
𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘�

𝐻𝐻𝐑𝐑𝐯𝐯�𝑘𝑘
−1�𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘��  .     (4) 

 



5308                                       Yoo et al.: ML Symbol Detection for MIMO Systems in the Presence of Channel Estimation Errors 

The detection of 𝐱𝐱𝑘𝑘 only depends on the exponential term in (4); hence, the detection rule 
can be simplified as 

 
𝐱𝐱�𝑘𝑘 = arg min

𝐱𝐱𝑘𝑘
��𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘�

𝐻𝐻𝐑𝐑𝐯𝐯�𝑘𝑘
−1�𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘��  .                                     (5) 

  
To obtain the solution of (5), knowledge of 𝐑𝐑𝐯𝐯�𝑘𝑘 is required at the receiver. From (2), the 

effective noise in the kth symbol interval can be written as 𝐯𝐯�𝑘𝑘 = 𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘 , and the 
instantaneous covariance matrix can be estimated in the form of 

 
𝐑𝐑𝐯𝐯�𝑘𝑘 =  �𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘��𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘�

𝐻𝐻.     (6) 
 
We note that (6) requires exact knowledge of  𝐱𝐱𝑘𝑘, which is unavailable at the receiver. 

Therefore, instead of 𝐱𝐱𝑘𝑘, we exploit the a-posteriori probabilities of candidate symbol vectors, 
which can be generated in the detector. The a-posteriori probability of the ith candidate 
symbol vector in the kth symbol interval can be written as 

 

𝑝𝑝𝑘𝑘𝑖𝑖 =
1

𝑃𝑃𝑘𝑘𝜋𝜋𝑁𝑁𝑡𝑡 det�𝐑𝐑�𝐯𝐯�,0�
exp �−�𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘𝑖𝑖 �

𝐻𝐻𝐑𝐑�𝐯𝐯�,0
−1�𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘𝑖𝑖 ��  ,               (7) 

 
where 𝒙𝒙𝑘𝑘𝑖𝑖  denotes the ith candidate symbol vector in the kth symbol interval, and 𝐑𝐑�𝐯𝐯�,0 is the 
initial estimate of 𝐑𝐑𝐯𝐯�𝑘𝑘. Furthermore, Pk represents the normalization factor that ensures that 
the sum of all of the probabilities is equal to one, i.e., ∑ 𝑝𝑝𝑘𝑘𝑖𝑖

𝑁𝑁𝑐𝑐
𝑖𝑖=1 = 1. Here, 𝑁𝑁𝑐𝑐 = 2𝑁𝑁𝑡𝑡×𝑁𝑁𝑚𝑚 is the 

number of candidate symbol vectors, where 𝑁𝑁𝑚𝑚 is the modulation order. By using (7), 𝐑𝐑𝐯𝐯�𝑘𝑘 can 
be estimated in the form of 
 

𝐑𝐑�𝐯𝐯�𝑘𝑘 = �𝑝𝑝𝑘𝑘𝑖𝑖
𝑁𝑁𝑐𝑐

𝑖𝑖=1

�𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘𝑖𝑖 ��𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘𝑖𝑖 �
𝐻𝐻 .                                       (8) 

 
Under the assumption that the channel matrix and its estimate are fixed for K symbol intervals, 
the covariance matrix of the effective noise can be more accurately estimated by averaging 
𝐑𝐑�𝐯𝐯�𝑘𝑘 for 𝑘𝑘 =  1, 2, . . . ,𝐾𝐾, i.e., 
 

𝐑𝐑𝐯𝐯� =
1
𝐾𝐾
�𝐑𝐑�𝐯𝐯�𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 .                                                                  (9) 

 
To compute 𝑝𝑝𝑘𝑘𝑖𝑖  in (7), the initial estimate of 𝐑𝐑𝐯𝐯� needs to be determined. In (3), the elements of 
E are assumed to be zero-mean i.i.d. random variables, and without any further information, it 
is reasonable to choose the expectation of 𝐑𝐑𝐯𝐯� with respect to E for its initial estimate: 
 

𝐑𝐑�𝐯𝐯�,0 = (𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑥𝑥2𝜎𝜎𝐸𝐸2𝑁𝑁𝑡𝑡)𝐈𝐈𝑁𝑁𝑟𝑟  ,                                                   (10) 
 
where 𝜎𝜎𝐸𝐸2 denotes the variance of each CSI error. Finally, the detector output is generated by 
substituting 𝐑𝐑𝐯𝐯� for 𝐑𝐑𝐯𝐯�𝑘𝑘 in (4). 
 Note that the detection scheme in [11] utilizes (10), which is the expectation of the covariance 
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matrix, throughout its entire detection process. However, in the proposed algorithms, the 
covariance matrix is initially set to (10), but it gets updated through multiple iterations so that 
it approaches its instantaneous value (3), which is capable of providing an improved overall 
detection performance. The detailed procedures of the proposed algorithms will be described 
in the subsequent section. 

4. Proposed Iterative Algorithms 

4.1 Iterative ML Detection (IMLD) 
To further improve the performance of the proposed detector, an iterative scheme can be 
considered. Specifically, the covariance estimate of the effective noise in (8) replaces 𝐑𝐑�𝐯𝐯�,0 in 
(7) in the subsequent iteration to update 𝑝𝑝𝑘𝑘𝑖𝑖 , 𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑐𝑐, 𝑘𝑘 = 1, 2,⋯ ,𝐾𝐾. Then, the updated 
values of 𝑝𝑝𝑘𝑘𝑖𝑖  are used to recalculate 𝐑𝐑�𝐯𝐯�𝑘𝑘 and 𝐑𝐑𝐯𝐯� in (8) and (9). This process is repeated to 
increase the accuracy of the final detection result. Consequently, the IMLD scheme can be 
summarized as follows:  
 
 IMLD Algorithm 

 
1. Initialization : Set l = 1 and 𝐑𝐑�𝐯𝐯�,0 = (𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑥𝑥2𝜎𝜎𝐸𝐸2𝑁𝑁𝑡𝑡)𝐈𝐈𝑁𝑁𝑟𝑟. 
2. Calculate 𝑝𝑝𝑘𝑘,𝑙𝑙

𝑖𝑖 , , 𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑐𝑐, 𝑘𝑘 = 1, 2,⋯ ,𝐾𝐾 by using 𝐑𝐑�𝐯𝐯�,𝑙𝑙−1 in (7). 
3. Calculate 𝐑𝐑�𝐯𝐯�𝑘𝑘,𝑙𝑙, 𝑘𝑘 = 1, 2,⋯ ,𝐾𝐾, in (8) 
4. Update 𝐑𝐑�𝐯𝐯�,𝑙𝑙 = 1

𝐾𝐾
∑ 𝐑𝐑�𝐯𝐯�𝑘𝑘,𝑙𝑙
𝐾𝐾
𝑘𝑘=1 . 

5. 𝑙𝑙 ← 𝑙𝑙 + 1. 
6. If 𝑙𝑙 ≤ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

     Go to step 2. 
else 
     Find the ML solutions 𝐱𝐱�𝑘𝑘, 𝑘𝑘 = 1, 2,⋯ ,𝐾𝐾, by using 𝐑𝐑�𝐯𝐯�,𝑙𝑙 in (5). 
end 

 
In this algorithm, l denotes the iteration order. In step 6, if l exceeds the predetermined 
maximum number of iterations, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, the algorithm is terminated by finding the ML solutions. 
 

4.2 Iterative ML Detection (ILSD) 
In the previous subsection, we proposed an algorithm that estimates the instantaneous 
covariance matrix of the effective noise by using the a-posteriori probabilities of all of the 
candidate symbol vectors. Even though the proposed scheme is capable of providing improved 
performance, the computational complexity of this estimation increases exponentially with 
𝑁𝑁𝑚𝑚  and 𝑁𝑁𝑡𝑡 , rendering the scheme impractical. Hence, we propose to exploit the LSD 
algorithm, which is capable of reducing computational complexity while achieving 
near-optimal performance. 

LSD is an expansion of the original sphere decoding (SD) scheme. SD is designed to 
efficiently find a single solution point. Therefore, when a point that is inside the sphere is 
found, the radius of the sphere for searching the candidate points is updated to the distance 
between the received signal and the found point [16]. On the other hand, LSD aims to find the 
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𝑁𝑁𝐿𝐿 most probable points [17]; hence, LSD fixes the initial radius and selects multiple points 
that are inside the sphere radius. When the number of selected points is greater than  𝑁𝑁𝐿𝐿, LSD 
computes the distance of each selected point from the received signal and selects the  𝑁𝑁𝐿𝐿 
points with the smallest distances. In the proposed ILSD scheme, only  𝑁𝑁𝐿𝐿 points, which are 
selected by LSD, are used to estimate the covariance matrix, 𝐑𝐑𝐯𝐯�, instead of exploiting all of 
the candidate symbol vectors. 

Conventional LSD is typically derived in a real-domain system model [16, 18]. In the rest of 
this paper, we will employ a real-domain representation for each matrix and vector that can be 
obtained by using the transformation that is specified in [19]. Then, the cost function in (5) can 
be represented as 
 

�𝐲𝐲𝑘𝑘 −𝐇𝐇�𝐱𝐱𝑘𝑘�
𝑇𝑇𝐑𝐑�𝐯𝐯�

−1
�𝐲𝐲𝑘𝑘 −𝐇𝐇�𝐱𝐱𝑘𝑘� = (𝐱𝐱𝑘𝑘 − 𝐱𝐱�𝑘𝑘)𝑇𝑇𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�

−1𝐇𝐇(𝐱𝐱𝑘𝑘 − 𝐱𝐱�𝑘𝑘)                                       

 + 𝐲𝐲𝑘𝑘𝑇𝑇 �𝐑𝐑�𝐯𝐯�
−1 −𝐑𝐑�𝐯𝐯�

−1𝐇𝐇�𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�
−1𝐇𝐇�

−1
𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�

−1
�𝐲𝐲𝑘𝑘 ,       (11) 

 

where 𝐱𝐱�𝑘𝑘 = �𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�
−1𝐇𝐇�

−1
𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�

−1𝐲𝐲𝑘𝑘. In (11), it is observed that the second term on the 
right-hand side does not depend on x; hence, ML detection can be epressed as 
 

𝐱𝐱�𝑘𝑘 = arg min𝐱𝐱𝑘𝑘{(𝐱𝐱𝑘𝑘 − 𝐱𝐱�𝑘𝑘)𝑇𝑇𝐔𝐔𝑇𝑇𝐔𝐔(𝐱𝐱𝑘𝑘 − 𝐱𝐱�𝑘𝑘)},     (12) 
 
where U is an 𝑁𝑁𝑡𝑡 × 𝑁𝑁𝑡𝑡  upper triangular matrix such that 𝐔𝐔𝑇𝑇𝐔𝐔 = 𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�−1𝐇𝐇, and (12) only searches 
the points that lie inside the sphere with a radius of r, i.e., the points that satisfy (𝐱𝐱𝑘𝑘 −
𝐱𝐱�𝑘𝑘)𝑇𝑇𝐔𝐔𝑇𝑇𝐔𝐔(𝐱𝐱𝑘𝑘 − 𝐱𝐱�𝑘𝑘) ≤ 𝑟𝑟2. The radius r is determined so that we are reasonably sure that a 
sufficient number of points exists inside the sphere, as described in [18]. 
Consequently, the ILSD scheme can be summarized as follows: 
 
 ILSD Algorithm 

 
1. Initialization : Set l = 1, 𝐑𝐑�𝐯𝐯�,0 = (𝜎𝜎𝑣𝑣2 + 𝜎𝜎𝑥𝑥2𝜎𝜎𝐸𝐸2𝑁𝑁𝑡𝑡)𝐈𝐈𝑁𝑁𝑟𝑟, and  

𝐱𝐱�𝑘𝑘,0 = �𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�,0
−1𝐇𝐇�

−1
𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�,0

−1𝐲𝐲𝑘𝑘. 

2. Calculate 𝐔𝐔𝑙𝑙−1 by applying Cholesky factorization to 𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�,𝑙𝑙−1
−1 𝐇𝐇. 

3. Search the points that satisfy (𝐱𝐱𝑘𝑘 − 𝐱𝐱�𝑘𝑘)𝑇𝑇𝐔𝐔𝑇𝑇𝐔𝐔(𝐱𝐱𝑘𝑘 − 𝐱𝐱�𝑘𝑘) ≤ 𝑟𝑟2, 𝑘𝑘 = 1, 2,⋯ ,𝐾𝐾, to 
generate a list of 𝑁𝑁𝐿𝐿 points. 

4. Calculate 𝑝𝑝𝑘𝑘,𝑙𝑙
𝑖𝑖 , , 𝑘𝑘 = 1, 2,⋯ ,𝐾𝐾, for the 𝑁𝑁𝐿𝐿 selected points by using 𝐑𝐑�𝐯𝐯�,𝑙𝑙−1 in (7). 

5. Calculate 𝐑𝐑�𝐯𝐯�𝑘𝑘,𝑙𝑙, 𝑘𝑘 = 1, 2,⋯ ,𝐾𝐾, in (8). 
6. Update 𝐑𝐑�𝐯𝐯�,𝑙𝑙 = 1

𝐾𝐾
∑ 𝐑𝐑�𝐯𝐯�𝑘𝑘,𝑙𝑙
𝐾𝐾
𝑘𝑘=1  and calculate 𝐱𝐱�𝑘𝑘,𝑙𝑙 = �𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�,𝑙𝑙

−1𝐇𝐇�−1𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�,𝑙𝑙
−1𝐲𝐲𝑘𝑘. 

7. 𝑙𝑙 ← 𝑙𝑙 + 1. 
8. If 𝑙𝑙 ≤ 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

     Go to step 2. 
else 
     Select the nearest point to  𝐱𝐱�𝑘𝑘,𝑙𝑙 for the ML solution. 
end 

 
In step 3, if the number of selected points is smaller than 𝑁𝑁𝐿𝐿, the radius increases so that the 

sphere accommodates a larger number of points. In step 7, if the iteration order is greater than 
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𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, the ILSD algorithm is terminated by finding the ML solution. Otherwise, the algorithm 
returns to step 2 to proceed with the iterations. 

 5. Computational Complexity  
In this section, the computational complexities of the proposed schemes are examined by 
counting the four fundamental arithmetic operations. To find the inverse of an N × N matrix, it 
is assumed that the Gauss-Jordan elimination method is employed, which requires real 
(complex) operations of N3 − N additions, N3 − N multiplications, and N2 + N divisions for a 
real (complex) matrix. However, when a matrix is diagonal, N divisions are only required for 
matrix inversion. 
 

5.1 IMLD 
In this subsection, the computational complexity of IMLD is investigated for each step of the 
algorithm by counting the number of complex operations. In step 1, the algorithm is initialized, 
and there is no computation. The normalized probabilities are calculated in step 2, where 
𝑁𝑁𝑡𝑡𝑁𝑁𝑟𝑟 additions and multiplications are needed to calculate 𝐲𝐲𝑘𝑘 − 𝐇𝐇�𝐱𝐱𝑘𝑘𝑖𝑖 , which is stored and 
utilized in the following iterations. In addition, for the kth symbol interval and 𝑁𝑁𝑐𝑐 symbol 
candidates, 𝑁𝑁𝑐𝑐(𝑁𝑁𝑡𝑡  +  1)𝑁𝑁𝑟𝑟  −  1 additions, 𝑁𝑁𝑐𝑐(𝑁𝑁𝑡𝑡  +  2)𝑁𝑁𝑟𝑟  multiplications and 𝑁𝑁𝑐𝑐  divisions 
are required in the first iteration (l = 1), whereas 𝑁𝑁𝑐𝑐𝑁𝑁𝑟𝑟2  −  1  additions, 𝑁𝑁𝑐𝑐(𝑁𝑁𝑟𝑟2  +
 𝑁𝑁𝑟𝑟) multiplications, and 𝑁𝑁𝑐𝑐  divisions should be performed in each of the subsequent 
iterations ( 𝑙𝑙 ≠ 1 ), where 𝑁𝑁𝑐𝑐  −  1  additions and 𝑁𝑁𝑐𝑐  divisions are conducted for the 
normalization. Furthermore, these computations are repeated for each of the K symbol 
intervals. 
In step 3, 𝐾𝐾(𝑁𝑁𝐶𝐶  −  1)𝑁𝑁𝑟𝑟2  additions and 2𝐾𝐾𝑁𝑁𝑐𝑐𝑁𝑁𝑟𝑟2  multiplications are required during K 
symbol intervals. The instantaneous covariance matrix is estimated in step 4, which requires 
(𝐾𝐾 −  1)𝑁𝑁𝑟𝑟2  additions, and 𝑁𝑁𝑟𝑟2  divisions. Then, the symbol detection in (5) is performed, 
where 𝑁𝑁𝑟𝑟3  +  𝐾𝐾𝑁𝑁𝑐𝑐𝑁𝑁𝑟𝑟2  −𝑁𝑁𝑟𝑟  − 𝐾𝐾𝑁𝑁𝑐𝑐  additions, 𝑁𝑁𝑟𝑟3  + 𝐾𝐾𝑁𝑁𝑐𝑐𝑁𝑁𝑟𝑟2  + (𝐾𝐾𝑁𝑁𝑐𝑐  −  1)𝑁𝑁𝑟𝑟 
multiplications and 𝑁𝑁𝑟𝑟2  + 𝑁𝑁𝑟𝑟  divisions are conducted under the assumption that the 
Gauss-Jordan elimination method is employed for matrix inversion. Consequently, the total 
computational loads for the K symbol intervals can be summarized as follows: 
 

𝑁𝑁𝐶𝐶𝐶𝐶 = 𝑙𝑙𝑁𝑁𝑟𝑟3 + {(𝑙𝑙 − 1)𝑁𝑁𝑡𝑡 + (𝑙𝑙 + 1)𝐾𝐾𝑁𝑁𝑐𝑐 − 𝑙𝑙}𝑁𝑁𝑟𝑟2 − {(𝑁𝑁𝑟𝑟 + 1)𝐾𝐾𝑁𝑁𝑐𝑐 − 𝑙𝑙 + 2}𝑁𝑁𝑟𝑟 
             −𝐾𝐾𝑁𝑁𝑐𝑐 − 𝐾𝐾 − 𝑙𝑙 + 1  , 
𝑁𝑁𝐶𝐶𝐶𝐶 = 𝑙𝑙𝑁𝑁𝑟𝑟3 + 3𝑙𝑙𝑙𝑙𝑁𝑁𝑐𝑐𝑁𝑁𝑟𝑟2 + {(𝑁𝑁𝑡𝑡 + 𝑙𝑙 + 2)𝐾𝐾𝑁𝑁𝑐𝑐 − 𝑙𝑙}𝑁𝑁𝑟𝑟  , 
𝑁𝑁𝐶𝐶𝐶𝐶 = (2𝑁𝑁𝑟𝑟2 + 𝑁𝑁𝑟𝑟 + 𝐾𝐾𝑁𝑁𝑐𝑐)𝑙𝑙  , 

 
where 𝑁𝑁𝐶𝐶𝐶𝐶,  𝑁𝑁𝐶𝐶𝐶𝐶, and 𝑁𝑁𝐶𝐶𝐶𝐶 denote the numbers of required complex additions, multiplications, 
and divisions, respectively. 
 

5.2 ILSD 
Because a real-domain representation is employed in the ILSD algorithm, real-domain 
computations are considered for the computational complexity. 

In step 1, the estimated solution, 𝐱𝐱�𝑘𝑘 , is required for the initialization. Hence, 8𝑁𝑁𝑡𝑡3 +
(16𝑁𝑁𝑟𝑟 − 4)𝑁𝑁𝑡𝑡2 + {4(𝐾𝐾 − 2)𝑁𝑁𝑟𝑟 − 2(𝐾𝐾 + 1)}𝑁𝑁𝑡𝑡  additions, 8𝑁𝑁𝑡𝑡3 + 16𝑁𝑁𝑟𝑟𝑁𝑁𝑡𝑡2 + {8𝑁𝑁𝑟𝑟2 +
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4(𝐾𝐾 + 1)𝑁𝑁𝑟𝑟 + 2}𝑁𝑁𝑡𝑡  multiplications, and 4𝑁𝑁𝑡𝑡2 + 2𝑁𝑁𝑡𝑡 + 2𝑁𝑁𝑟𝑟  divisions should be performed 
during K symbol intervals. By assuming 𝐇𝐇𝑇𝑇𝐑𝐑�𝐯𝐯�

−1𝐇𝐇 is calculated and stored in the previous step, 
only Cholesky factorization is conducted in step 2, which requires 8

3
𝑁𝑁𝑡𝑡3 −

2
3
𝑁𝑁𝑡𝑡  additions, 

8
3
𝑁𝑁𝑡𝑡3 −

2
3
𝑁𝑁𝑡𝑡 multiplications, and 2𝑁𝑁𝑡𝑡 − 1 divisions. 

In step 3, the bottom-up search algorithm is applied. Because the average number of 
searched points in each layer varies depending on the amount of noise and channel estimation 
errors, the computational load of this step is counted and averaged by the simulations, and it is 
denoted as the subscript “s3.” In step 4, the computation of the a-posteriori probability requires 
2𝐾𝐾𝑁𝑁𝐿𝐿(2𝑁𝑁𝑡𝑡  +  1)𝑁𝑁𝑟𝑟  –  𝐾𝐾 additions, 4𝐾𝐾𝑁𝑁𝐿𝐿(𝑁𝑁𝑡𝑡  +  1)𝑁𝑁𝑟𝑟 multiplications, and 𝐾𝐾𝑁𝑁𝐿𝐿 divisions in 
the first iteration, whereas 4𝐾𝐾𝑁𝑁𝐿𝐿𝑁𝑁𝑟𝑟2  −  𝐾𝐾 additions, 𝐾𝐾𝑁𝑁𝐿𝐿(4𝑁𝑁𝑟𝑟2  +  2𝑁𝑁𝑟𝑟) multiplications, and 
𝐾𝐾𝑁𝑁𝐿𝐿 divisions are required in the subsequent iterations. In step 5, 4𝐾𝐾(𝑁𝑁𝐿𝐿  −  1)𝑁𝑁𝑟𝑟2 additions 
and 8𝐾𝐾𝑁𝑁𝐿𝐿𝑁𝑁𝑟𝑟2  multiplications are performed. Finally, 8𝑁𝑁𝑡𝑡3 + (16𝑁𝑁𝑟𝑟 − 4)𝑁𝑁𝑡𝑡2 + {16𝑁𝑁𝑟𝑟2 +
4(𝐾𝐾 − 6)𝑁𝑁𝑟𝑟 − 𝐾𝐾 − 1}𝑁𝑁𝑡𝑡 + 8𝑁𝑁𝑟𝑟3 + 4(𝐾𝐾 − 1)𝑁𝑁𝑟𝑟2 − 2𝑁𝑁𝑟𝑟  additions, 8𝑁𝑁𝑡𝑡3 + 16𝑁𝑁𝑟𝑟𝑁𝑁𝑡𝑡2 +
(16𝑁𝑁𝑟𝑟2 + 4𝐾𝐾𝑁𝑁𝑟𝑟 + 2)𝑁𝑁𝑡𝑡 + 8𝑁𝑁𝑟𝑟3 − 2𝑁𝑁𝑟𝑟  multiplications, and 4𝑁𝑁𝑡𝑡2 + 2𝑁𝑁𝑡𝑡 + 8𝑁𝑁𝑟𝑟2 + 2𝑁𝑁𝑟𝑟 
divisions are required in step 6. In summary, the total computational complexity for the ILSD 
scheme during K symbol intervals can be expressed as 
 

𝑁𝑁𝑅𝑅𝑅𝑅 = �8𝑙𝑙 +
32
3
�𝑁𝑁𝑡𝑡3 + 4(𝑙𝑙 + 1)(4𝑁𝑁𝑟𝑟 − 1)𝑁𝑁𝑡𝑡2 

             + �16𝑙𝑙𝑁𝑁𝑟𝑟2 + 4{𝐾𝐾(𝑙𝑙 + 𝑁𝑁𝐿𝐿 + 1) − 2(3𝑙𝑙 + 1)}𝑁𝑁𝑟𝑟 − 𝐾𝐾(𝑙𝑙 + 2) − 𝑙𝑙 −
8
3�
𝑁𝑁𝑡𝑡  

             +8𝑙𝑙𝑁𝑁𝑟𝑟3 + 4𝐾𝐾{𝑙𝑙𝑙𝑙(𝑁𝑁𝐿𝐿 + 1) − 2}𝑁𝑁𝑟𝑟2 − 𝑙𝑙(2𝑁𝑁𝑟𝑟 + 𝐾𝐾) + 𝑁𝑁𝑅𝑅𝑅𝑅,𝑠𝑠3 , 

𝑁𝑁𝑅𝑅𝑅𝑅 = �8𝑙𝑙 +
32
3
�𝑁𝑁𝑡𝑡3 + 16(𝑙𝑙 + 1)𝑁𝑁𝑟𝑟𝑁𝑁𝑡𝑡2 

              + �8(2𝑙𝑙 + 1)𝑁𝑁𝑟𝑟2 + 4{𝐾𝐾(𝑙𝑙 + 𝑁𝑁𝐿𝐿 + 1) + 1}𝑁𝑁𝑟𝑟 + 2 �𝑙𝑙 +
2
3
��𝑁𝑁𝑡𝑡 

              +8𝑙𝑙𝑁𝑁𝑟𝑟3 + 4(𝑙𝑙 + 1)𝐾𝐾𝑁𝑁𝐿𝐿𝑁𝑁𝑟𝑟2 + 2{(𝑙𝑙 + 1)𝐾𝐾𝑁𝑁𝐿𝐿 − 𝑙𝑙}𝑁𝑁𝑟𝑟 + 𝑁𝑁𝑅𝑅𝑅𝑅,𝑠𝑠3 , 
𝑁𝑁𝑅𝑅𝑅𝑅 = 4(𝑙𝑙 + 1)𝑁𝑁𝑡𝑡2 + 2(𝑙𝑙 + 2)𝑁𝑁𝑡𝑡 + 8𝑙𝑙𝑁𝑁𝑟𝑟2 + 2(𝑙𝑙 + 1)𝑁𝑁𝑟𝑟 − 1 , 

 
where 𝑁𝑁𝑅𝑅𝑅𝑅, 𝑁𝑁𝑅𝑅𝑅𝑅, and 𝑁𝑁𝑅𝑅𝑅𝑅 denote the numbers of real additions, real multiplications, and real 
divisions, respectively. 

6. Simulation Results 

6.1 BER Performance 
To evaluate the performance of the proposed schemes, computer simulations have been 
performed. The elements of H are assumed to be independent zero-mean complex Gaussian 
random variables with a unit variance, whereas the elements of the CSI error matrix E are 
independent zero-mean complex Gaussian random variables with a variance of σ𝐸𝐸2  assuming 
an uncorrelated block Rayleigh fading channel. It is also assumed that H and E are constant for 
K symbol intervals. 

In the simulation results, the signal-to-noise ratio (SNR) is defined as the ratio of the total 
average transmit power to the noise variance, i.e., 
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SNR =
𝜎𝜎𝑥𝑥2𝑁𝑁𝑡𝑡
𝜎𝜎𝑣𝑣2

 .                                                           (13) 

 
The performance of the idealized ML and SD detectors with perfect knowledge of the 

covariance matrix (3) is included for the lower bound of the bit-error-rate (BER) performance, 
whereas the conventional ML and SD detectors with imperfect CSI represent the upper bound 
of the BER performance. The robust ML detector in [11] is also considered in the performance 
comparison. However, the ML detector in [11] does not give any performance gains over the 
conventional ML detector for constant-modulus modulation schemes in the presence of i.i.d. 
CSI errors; therefore, its simulation results for QPSK modulation are omitted. 

 

 
Fig. 1. MSE versus SNR performance : 𝟒𝟒 × 𝟒𝟒 and 𝟔𝟔 × 𝟔𝟔 MIMO, QPSK, 𝛔𝛔𝑬𝑬𝟐𝟐 = −𝟏𝟏𝟏𝟏 dB, and K = 32. 

 
 
To analyze the convergence of the estimated covariance matrix, the mean squared error 

(MSE) of the estimated covariance matrix is tested, and Fig. 1 presents the corresponding 
results for 4×4 and 6×6MIMO systems with σ𝐸𝐸2 = −10 dB and K = 32 when QPSK 
modulation is assumed. In the low SNR region, the MSE increases as the iteration proceeds. 
This is because incorrect symbol detection results in low SNRs, leading to inaccuracies in the 
estimation of the covariance matrix. However, in the medium and high SNR regions, it is 
observed that the MSE decreases as the number of iterations increases, which implies that the 
potential gains of the proposed detection schemes in terms of the BER are in the medium and 
high SNR regions. Furthermore, it is seen that there is no significant difference in the MSE 
between four and eight iterations. 
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Fig. 2. BER versus SNR performance : 4 × 4 MIMO, QPSK, and 𝛔𝛔𝑬𝑬𝟐𝟐 = −𝟏𝟏𝟏𝟏 dB. 

 
 

Fig. 2 shows the simulation results of the proposed schemes for a 4 × 4 MIMO system with 
σ𝐸𝐸2 = −10  dB and K = 16, 32 when QPSK modulation is used. In the proposed detection 
schemes, as K increases, a larger number of received signals are exploited for the estimation of 
the instantaneous covariance matrix of the effective noise; hence, improved performance is 
expected. It is observed that the proposed IMLD with K = 16 has an SNR gain of 2.5 dB over 
the conventional ML scheme with imperfect CSI at a BER of 3 × 10−2. When the number of 
symbol intervals is increased to K = 32, this gain is increased to 2.9 dB at the same BER. In 
addition, compared to the performance in the first iteration, the IMLD scheme with K = 32 
achieves SNR gains of 3.8 dB and 5.4 dB at a BER of 10−2 after the second and fourth 
iterations, respectively. However, there is no significant further gain at the same BER after the 
eighth iteration, which implies that four iterations can be a reasonable choice for the optimal 
trade-off between the performance and the complexity. On the basis of the simulation results 
in Fig. 1 and 2, the number of iterations will be fixed to four in the forthcoming performance 
comparisons. 

In Fig. 2, it is also observed that the ILSD scheme with NL = 2 provides an SNR gain of 0.8 
dB at BER=10−2 compared to that with NL = 1 after the eighth iteration. Furthermore, it is seen 
that ILSD with NL = 2 achieves nearly the same performance as IMLD, in spite of its 
significantly lower computational complexity. Specifically, for the computation of 𝐑𝐑�𝐯𝐯� in the 
corresponding simulation environment, ILSD with NL = 2 only takes two selected candidate 
solution vectors into account in each symbol interval, whereas IMLD needs to consider 
2𝑁𝑁𝑡𝑡×𝑁𝑁𝑚𝑚 = 216 solution vectors. 
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In the derivation of the proposed detection schemes, it is claimed that the effect of CSI 

errors, 𝐄𝐄𝐱𝐱𝑘𝑘 , can be approximately modeled as Gaussian random variables under the 
assumption that Nt is sufficiently large, and its proof is given in Appendix A. However, in Fig. 
2, it is seen that, even for Nt = 4, the IMLD scheme achieves substantial gains over the 
conventional ML detector in the presence of CSI errors by taking the covariance matrix of the 
effective noise into account.  

 
 

 
Fig. 3. BER versus SNR performance : 6 × 6 MIMO, QPSK, 𝑵𝑵𝑳𝑳 = 𝟐𝟐, and 𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟒𝟒. 

 
 

Fig. 3 shows the BER performance of the ILSD scheme and conventional SD for a 6 × 6 
MIMO system with various values of σ𝐸𝐸2  when QPSK modulation is used. For σ𝐸𝐸2= −20 dB, 
the ILSD scheme achieves nearly the same performance as the idealized SD with perfect 
knowledge of the covariance matrix. It is also seen that the ILSD scheme with K = 32 only has 
a marginal performance degradation with respect to idealized SD for σ𝐸𝐸2  = −15 dB. 
Furthermore, it is seen that the proposed ILSD scheme provides significant SNR gains over 
conventional SD, which proves its robustness to CSI errors. In particular, for σ𝐸𝐸2  = −10 dB, the 
ILSD schemes with K = 16, K = 32, and K = 64 achieve 4.1 dB, 5.2 dB, and 5.7 dB SNR gains 
respectively, over conventional SD at a BER of 2 × 10−2. 
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Fig. 4. BER versus SNR Performance : 4×4 MIMO, 16QAM, 𝑵𝑵𝑳𝑳 = 𝟐𝟐, and 𝑵𝑵𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = 𝟒𝟒. 

 
 
Fig. 4 presents the BER performance of the proposed scheme and robust ML in [11] for 4×4 

MIMO when 16-QAM modulation is assumed. The ILSD scheme with K = 16 exhibits an 
SNR gain of 1.4 dB at BER=10−2 over robust ML in [11] for σ𝐸𝐸2  = −20 dB, and this gain 
increases to 2.2 dB when K is doubled at the same BER. These performance gains result from 
the fact that the proposed schemes estimate the instantaneous covariance matrices of CSI 
errors for ML symbol detection, which provide improved robustness against CSI errors, 
whereas the algorithm in [11] only utilizes the long-term statistical information of CSI errors. 
 

6.2 Complexity Comparison 
In this subsection, the computational complexities of the proposed schemes and conventional 
ML and SD are investigated by using the results in Section 5. For a proper comparison, the 
complexity in the complex domain is converted to that in the real domain, which can be 
summarized as follows: 
 

𝑁𝑁𝐶𝐶𝐶𝐶 = 2𝑁𝑁𝑅𝑅𝑅𝑅 , 
𝑁𝑁𝐶𝐶𝐶𝐶 = 2𝑁𝑁𝑅𝑅𝑅𝑅 + 4𝑁𝑁𝑅𝑅𝑅𝑅 , 
𝑁𝑁𝐶𝐶𝐶𝐶 = 4𝑁𝑁𝑅𝑅𝑅𝑅 + 6𝑁𝑁𝑅𝑅𝑅𝑅 + 2𝑁𝑁𝑅𝑅𝑅𝑅 . 
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Fig. 5. Computational complexity : 𝟒𝟒 × 𝟒𝟒 MIMO, QPSK, 𝛔𝛔𝑬𝑬𝟐𝟐  = −10 dB, and K = 32. 

 
 

Fig. 5 shows the average number of real arithmetic operations for 4 × 4 MIMO, σ𝐸𝐸2  = −10dB, 
K = 32, and the QPSK modulation. As the number of iterations increase, the computational 
complexities of the proposed iterative detection schemes also increase, whereas the 
conventional non-iterative schemes require a fixed amount of computational load. In Fig. 5, it 
is seen that the ILSD scheme requires a higher number of operations compared to the 
conventional SD scheme. The number of operations is approximately 4.9 times, 8.5 times, and 
15.1 times larger after the first, second, and fourth iterations, respectively. Similarly, for real 
additions, the ILSD scheme requires 3.9 times, 6.8 times, and 12.5 times higher complexity 
than the conventional SD scheme after the first, second, and fourth iterations, respectively. 
However, it is found that the ILSD scheme attains a significant reduction in the computational 
load with respect to the IMLD scheme. Specifically, the ILSD scheme only requires 0.9 % of 
additions, 1.1 % of multiplications, and 1.8 % of divisions compared to the IMLD scheme; 
however, nearly the same BER performance is achieved, as shown in Fig. 2. 

7. Conclusion 
In this paper, we have proposed novel iterative ML detection algorithms for MIMO systems 
that are robust to CSI errors. The proposed schemes estimate the instantaneous covariance 
matrix of the effective noise, which contains the effects of CSI errors as well as the additive 
noise. In the proposed IMLD scheme, the a-posteriori probabilities of all of the candidate 
solution points are considered to estimate the instantaneous covariance matrix of the effective 
noise. In contrast, in the ILSD scheme, it is only estimated by exploiting a list of the selected 
points that lie inside a sphere. Despite its substantially lower complexity, the simulation 
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results show that ILSD with NL = 2 nearly achieves the BER performance of IMLD. To further 
improve the performance of the proposed detection schemes, the covariance matrix of the 
effective noise is iteratively estimated on the basis of the updated probabilities of the candidate 
solution points. 

In the simulation results, it is shown that the IMLD and ILSD schemes provide significant 
performance gains over the conventional ML detector in the presence of channel estimation 
errors, especially in medium and high SNR regions, which are typical operating SNR regions 
for mobile communication systems. Specifically, for a 6 × 6 MIMO system with σ𝐸𝐸2  = −15 dB, 
K = 32, and QPSK modulation, ILSD provides an SNR gain of 3.4 dB at BER=4 × 10−4 over 
the conventional ML detector. The computational complexity is also evaluated, which shows 
that ILSD achieves a significant reduction of the computational complexity compared to 
IMLD.  

For future work, the extension of the proposed detection algorithm to soft decoding for 
coded MIMO systems can be considered. 

Appendix A: Proof for the Gaussianity of Ex 
The mth element of Ex can be written as 
 

[𝐄𝐄𝐄𝐄]𝑚𝑚 = �𝛿𝛿𝑚𝑚𝑚𝑚𝑥𝑥𝑛𝑛

𝑁𝑁𝑡𝑡

𝑛𝑛=1

 ,                                                  (𝐴𝐴. 1) 

 
where [·]m denotes the mth element of a vector, and 𝛿𝛿𝑚𝑚𝑚𝑚 represents the element at the mth row 
and nth column of E. We assume that 𝛿𝛿𝑚𝑚𝑚𝑚  for 𝑚𝑚 = 1, 2,⋯ ,𝑁𝑁𝑟𝑟  and 𝑛𝑛 = 1, 2,⋯ ,𝑁𝑁𝑡𝑡 , 
represents the instantaneous values of i.i.d. random variables. We denote the normalized real 
part of [𝐄𝐄𝐄𝐄]𝑚𝑚 as 
 

𝑧𝑧𝑚𝑚 = 𝑠𝑠𝑁𝑁𝑡𝑡
−1��𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅𝑥𝑥𝑛𝑛,𝑅𝑅 − 𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼𝑥𝑥𝑛𝑛,𝐼𝐼�

𝑁𝑁𝑡𝑡

𝑛𝑛=1

 ,                                   (𝐴𝐴. 2) 

 
where 
 

𝑠𝑠𝑁𝑁𝑡𝑡
−1 = �

𝜎𝜎𝑥𝑥2

2 �𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅
2 + 𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼

2 �
𝑁𝑁𝑡𝑡

𝑛𝑛=1

 ,                                          (𝐴𝐴. 3) 

 
and the subscripts R and I represent the real and imaginary parts of a complex number, 
respectively. Then, for a given set of instantaneous values of 𝛿𝛿𝑚𝑚𝑚𝑚, we will prove that 𝑧𝑧𝑚𝑚 
converges to a standard Gaussian random variable as Nt → ∞ when the transmitted signals 
𝑥𝑥𝑛𝑛,𝑅𝑅 and 𝑥𝑥𝑛𝑛,𝐼𝐼 are considered as i.i.d. zero-mean random variables. 

In (A. 2), 𝑧𝑧𝑚𝑚 can be observed as the sum of independent random variables 𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅𝑥𝑥𝑛𝑛,𝑅𝑅 and 
𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼𝑥𝑥𝑛𝑛,𝐼𝐼 , 𝑛𝑛 = 1, 2,⋯ ,𝑁𝑁𝑡𝑡. We note that they are not identically distributed owing to different 
instantaneous values of 𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅 and 𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼  . In order to check if 𝑧𝑧𝑚𝑚 converges to a standard 
Gaussian distribution, we test the Lindeberg condition [16]. For the signal model in (A. 2), the 
Lindeberg condition can be reformulated as 
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1
𝑠𝑠𝑁𝑁𝑡𝑡
2 � �𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅

2 𝔼𝔼 �𝑥𝑥𝑛𝑛,𝑅𝑅
2 𝐼𝐼 ��𝑥𝑥𝑛𝑛,𝑅𝑅� >

𝜂𝜂𝑠𝑠𝑁𝑁
𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅

��+ 𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼
2 𝔼𝔼 �𝑥𝑥𝑛𝑛,𝐼𝐼

2 𝐼𝐼 ��𝑥𝑥𝑛𝑛,𝑅𝑅� >
𝜂𝜂𝑠𝑠𝑁𝑁
𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼

���
𝑁𝑁𝑡𝑡

𝑛𝑛=1

→ 0     

as Nt → ∞,∀𝜂𝜂 > 0 ,   (𝐴𝐴. 4) 
where 𝐼𝐼(. ) is the indicator function 
 

𝐼𝐼(𝐴𝐴) = �1    if A is true,
0    if A is false.                                               (A. 5) 

 
We define 𝛿𝛿𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚  as the maximum value among �𝛿𝛿𝑚𝑚1,𝑅𝑅, ⋯ , 𝛿𝛿𝑚𝑚𝑁𝑁𝑡𝑡,𝑅𝑅,𝛿𝛿𝑚𝑚1,𝐼𝐼 , ⋯ , 𝛿𝛿𝑚𝑚𝑁𝑁𝑡𝑡,𝐼𝐼�. 

Then, the left-hand side of (A.4) satisfies the following inequality: 
 

1
𝑠𝑠𝑁𝑁𝑡𝑡
2 � �𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅

2 𝔼𝔼 �𝑥𝑥𝑛𝑛,𝑅𝑅
2 𝐼𝐼 ��𝑥𝑥𝑛𝑛,𝑅𝑅� >

𝜂𝜂𝑠𝑠𝑁𝑁
𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅

�� + 𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼
2 𝔼𝔼 �𝑥𝑥𝑛𝑛,𝐼𝐼

2 𝐼𝐼 ��𝑥𝑥𝑛𝑛,𝑅𝑅� >
𝜂𝜂𝑠𝑠𝑁𝑁
𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼

���
𝑁𝑁𝑡𝑡

𝑛𝑛=1

 

≤
1
𝑠𝑠𝑁𝑁𝑡𝑡
2 � �𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅

2 𝔼𝔼 �𝑥𝑥𝑛𝑛,𝑅𝑅
2 𝐼𝐼 ��𝑥𝑥𝑛𝑛,𝑅𝑅� >

𝜂𝜂𝑠𝑠𝑁𝑁
𝛿𝛿𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚

�� + 𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼
2 𝔼𝔼 �𝑥𝑥𝑛𝑛,𝐼𝐼

2 𝐼𝐼 ��𝑥𝑥𝑛𝑛,𝑅𝑅� >
𝜂𝜂𝑠𝑠𝑁𝑁

𝛿𝛿𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚
���

𝑁𝑁𝑡𝑡

𝑛𝑛=1

 

=
1
𝑠𝑠𝑁𝑁𝑡𝑡
2 ��𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅

2 + 𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼
2 �𝔼𝔼 �𝑥𝑥1,𝑅𝑅

2 𝐼𝐼 ��𝑥𝑥1,𝑅𝑅� >
𝜂𝜂𝑠𝑠𝑁𝑁

𝛿𝛿𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚
��

𝑁𝑁𝑡𝑡

𝑛𝑛=1

 

=
2
𝜎𝜎𝑥𝑥2

𝔼𝔼 �𝑥𝑥1,𝑅𝑅
2 𝐼𝐼 ��𝑥𝑥1,𝑅𝑅� >

𝜂𝜂𝑠𝑠𝑁𝑁
𝛿𝛿𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚

�� .                                                                                              (A. 6) 

 
The third line of (A.6) is obtained from the fact that 𝑥𝑥𝑛𝑛,𝑅𝑅 and 𝑥𝑥𝑛𝑛,𝐼𝐼 are i.i.d. random variables. 

A sufficient condition for (A.6) to converge to zero can be expressed as 
 

s𝑁𝑁𝑡𝑡
𝛿𝛿𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚

→ ∞ as 𝑁𝑁𝑡𝑡 → ∞ .                                                (A. 7) 

 
In (A.3), 𝑠𝑠𝑁𝑁𝑡𝑡

2  is the sum of 2𝑁𝑁𝑡𝑡 instantaneous values of the i.i.d. random variables 𝛿𝛿𝑚𝑚𝑚𝑚,𝑅𝑅
2  and 

𝛿𝛿𝑚𝑚𝑚𝑚,𝐼𝐼
2 , which have positive mean values. Hence, we have s𝑁𝑁𝑡𝑡 → ∞ as 𝑁𝑁𝑡𝑡 → ∞, which implies 

(A.7). Consequently, (A.6) converges to zero, which proves that Lindeberg condition of (A.4) 
is satisfied. 
  For the normalized imaginary part of [𝐄𝐄𝐄𝐄]𝑚𝑚, similar steps can be performed to prove that it 
also tends to a standard Gaussian random variables; therefore, it is concluded that [𝐄𝐄𝐄𝐄]𝑚𝑚 can 
be approximated as a complex Gaussian random variable for sufficiently large 𝑁𝑁𝑡𝑡. 
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