• 제목/요약/키워드: maximum directional spectrum

검색결과 12건 처리시간 0.018초

구름 베어링의 결함 주파수 규명을 위한 방향 스펙트럼의 이용 (Identification of Defect Frequencies in Rolling Element Bearing Using Directional Spectra of Vibration Signals)

  • 박종포;이종원
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.393-400
    • /
    • 1999
  • Defect frequencies of rolling element bearings are experimentally investigated utilizing the two-sided directional spectra of the complex-valued vibration signals measured from the outer ring of defective bearings. The directional spectra make it possible to discern backward and forward defect frequencies. The experimental results show that the directional zoom spectrum is superior to the conventional spectrum in identification of bearing defect frequencies, in particular the inner race defect frequencies.

  • PDF

방향 스펙트럼 파 해석을 위한 GUI 프로그램 개발 (Development of GUI Program for Analyzing Directional Spectrum Waves)

  • 이진호;최재웅;강윤태;하문근
    • 대한조선학회논문집
    • /
    • 제41권1호
    • /
    • pp.1-7
    • /
    • 2004
  • GUI program for analyzing directional spectrum waves is introduced in this paper Basically, MLM (Maximum Likelihood Method) was used for this program which was additionally consisted of performing spectral and time domain analysis for two dimensional irregular waves. Moreover, the directionality of directional spectrum waves generated by single summation and double summation method was investigated based on MLM. The directionality from each summation method has good agreement compared with that of target wave spreading function in the case of single wide directional spectrum waves. In addition to this, the resolution of directionality in double summation method was investigated as introducing coherence function between each wave component

우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석 (A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea)

  • 김정한;김재관;허태민;이진호
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

다방향 불규칙파에 대한 조파 기법 및 방향 스펙트럼 추정 연구 (Study on Wave Generation Technique and Estimation of Directional Wave Spectra for Multi-Directional Irregular Waves)

  • 오승훈;정성준;황성철;김은수;성홍근
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.266-277
    • /
    • 2023
  • In this study, fundamental research is conducted for the generation technique and analysis of multi-directional irregular waves in the Deep Ocean Engineering Basin (DOEB). A three-dimensional boundary element method-based numerical tank is implemented to perform wave generation simulations, and directional spectrum estimation is carried out using the results of simulations. The wave generation technique of the Snake type wave maker, generating multi-directional irregular waves, is implemented using the Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) algorithms. The wave generation technique is validated by comparing the wave spectrum from simulations and experiments. A Maximum Likelihood Method (MLM) based estimation code is developed for estimating the directional wave spectra. The multi-directional irregular waves are tested in the DOEB and the numerical tank, and directional wave spectra obtained from two methodologies are estimated and compared. A correction procedure for the directional distribution of multi-directional waves is established, and the possibility of correcting the directional spreading function using the numerical tank is validated.

파향스펙트럼 추정법의 비교 연구 (A Comparative Study on the Methods Estimating Wave Directional Spectrum)

  • 오병철;심재설
    • 한국해안해양공학회지
    • /
    • 제2권3호
    • /
    • pp.119-127
    • /
    • 1990
  • 불규칙 파랑의 파향스펙트럼 추정법에 대하여 고찰하였다. 파향스펙트럼 추정이론의 근간은 Longuet-Higgins et al.(1963)이 제시한 방법으로 현재 많이 이용되고 있으나 추정정도가 매우 낮은 것으로 나타났다. 그리고 파향스펙트럼을 [0, 2$\pi$]에서의 확률밀도함수로 간주하고 Entropy 법칙을 응용한 Kobune et al.(1986)의 최대 엔트로피법 (MEM)은 Longuet-Higgins et al.의 방법 (LHM)에 비해 파향의 분석능이 매우 좋은 것으로 나타났다. 특히 MEM은 파향스펙트럼이 Delta 함수민 경과에는 그 파향스펙트럼을 정확하게 추정하며, 단봉형 스펙트럼의 경과에도 Mitsuyasu의 방향분산계수(spreading coefficient)가 5 이상이면 정도가 매우 좋은 것으로 나타났다. 또한, 쌍봉형 파향스펙트럼의 경과에는 두 peak를 이루는 파향의 각도차가 클수록 분해능이 양호하며, peak의 첨예도(peakedness)가 큰 쪽이 평활화(smoothing)되어 이 부분의 에너지 일부가 첨예도가 작은 peak쪽으로 이동하는 것을 알 수 있었다. 한편 LHM은 쌍봉형의 경과에도 단봉형으로 추정하는 경향이 뚜렷하며, 계산시간이 빠른 점을 제외하면 MEM에 비해 분해능이 매우 뒤떨어지는 방법이라 할 수 있다.

  • PDF

경사면을 입사하는 불규칙파랑의 방향 비대칭 매개변수 및 최대 방향분포 매개변수 (Directional Asymmetry Parameter and Maximum Spreading Parameter of Random Waves Incident on a Planar Slope)

  • 정재상;이창훈;조용식
    • 한국해안·해양공학회논문집
    • /
    • 제25권1호
    • /
    • pp.28-33
    • /
    • 2013
  • 해안선에 비스듬히 입사하는 다방향 불규칙파랑은 굴절에 의해 방향 비대칭성이 발생한다. 방향 비대칭은 최대 방향분포 매개변수($s_{max}$)와 연관된 비대칭 매개변수의 항으로 표현된다. 본 연구에서는 심해에서 다양한 주파향각과 최대 방향분포 매개변수 등의 특징을 갖는 다방향 불규칙파랑에 대해 수심 변화에 따른 비대칭 매개변수와 최대 방향분포 매개변수의 변화를 계산하였다. 계산 값들은 파랑의 방항 비대칭성을 무시한 Goda and Suzuki(1975)에 의한 결과와는 다르다. 비대칭 매개변수와 최대 방향분포 매개변수의 계산을 위해 JONSWAP 스펙트럼(Hasselmamn et al., 1973)과 Lee et al.(2010)의 방향 분포 함수를 사용하였다. 계산 과정과 결과들은 일반화를 위해 심해에서의 유의파고, 첨두주기, 첨두주기에 해당하는 파장 등으로 무차원화 하였다.

최대-최소 스펙트럼에 대응하는 인공합성지진에 대한 면진된 원전구조물의 지진취약도 곡선 평가 (Evaluation of Seismic Fragility Curve of Seismically Isolated Nuclear Power Plant Structures for Artificial Synthetic Earthquakes Corresponding to Maximum-Minimum Spectrum)

  • 김현정;송종걸
    • 한국지진공학회논문집
    • /
    • 제23권2호
    • /
    • pp.89-99
    • /
    • 2019
  • In order to increase the seismic safety of nuclear power plant (NPP) structures, a technique to reduce the seismic load transmitted to the NPP structure by using a seismic isolation device such as a lead-rubber bearing has recently been actively researched. In seismic design of NPP structures, three directional (two horizontal and one vertical directions) artificial synthetic earthquakes (G0 group) corresponding to the standard design spectrum are generally used. In this study, seismic analysis was performed by using three directional artificial synthetic earthquakes (M0 group) corresponding to the maximum-minimum spectrum reflecting uncertainty of incident direction of earthquake load. The design basis earthquake (DBE) and the beyond design basis earthquakes (BDBEs are equal to 150%, 167%, and 200% DBE) of G0 and M0 earthquake groups were respectively generated for 30 sets and used for the seismic analysis. The purpose of this study is to compare seismic responses and seismic fragility curves of seismically isolated NPP structures subjected to DBE and BDBE. From the seismic fragility curves, the probability of failure of the seismic isolation system when the peak ground acceleration (PGA) is 0.5 g is about 5% for the M0 earthquake group and about 3% for the G0 earthquake group.

Design and Construction of the Cylindrical Slit Type Shore Structures

  • Lee, Joong-Woo;Nam, Ki-Dae;Park, Sang-Gill;Kim, Sug-Moon;Kang, Seok-Jin
    • 한국항해항만학회지
    • /
    • 제33권9호
    • /
    • pp.645-651
    • /
    • 2009
  • In this study, a series of laboratory experiments were carried out to investigate the weak reflection of regular and random water waves over a train of protruded permeable shore structures. A cylindrical slit type breakwater and the alternatives are employed and compared for reflecting and transmitting capabilities of incident waves including wave forces. A series of random waves were generated by using the Bretschneider-Mitsuyasu frequency and directional spectrum. Measured spectrum of irregular waves without breakwaters is verified by comparing with those of the input waves generated. Weak reflection is occurred at the breakwater center of the peak frequency. If the row of breakwaters is fixed at three layers and the relative height of breakwater is fixed at 0.6, around 45% of incident wave energy is reflected to offshore. It is also found that the transmission of directional random waves increases as the maximum frequency parameter increases. A very good agreement is observed. Reflection coefficients of permeable submerged breakwaters are less than those of impermeable breakwaters. The upside-down L shape is recommended for a small fishery harbor mooring in terms of reflecting capability and of practical application. The final design was applied to the wharf of a small beach of Seolly, near Namhae at the southeast coast of Korea.

다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 해석 (Analysis of Multi-directional Random Waves Propagating over Multi Arrayed Impermeable Submerged Breakwater)

  • 정재상;강규영;조용식
    • 한국해안해양공학회지
    • /
    • 제19권1호
    • /
    • pp.29-37
    • /
    • 2007
  • 본 연구에서는 고유함수전개법을 사용하여 다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 통과와 반사를 계산하였다. 입사하는 다방향 불규칙파랑은 Bretschneider-Mitsuyasu 주파수 스펙트럼과 Mitsuyasu 타입의 방향스펙트럼을 사용하여 재현하였다. 첨두주파수의 Bragg 반사 조건에서 강한 반사가 발행하였다. 수중 방파제가 3열이고, 상대높이가 0.6일 때 입사하는 다방향 불규칙파 에너지의 25% 이상이 외해로 반사되었다. 그리고, 최대분산계수 $s_{max}$가 증가할 경우, 다방향 불규칙파랑의 반사율도 증가하였다.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.