Analysis of Multi-directional Random Waves Propagating over Multi Arrayed Impermeable Submerged Breakwater

다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 해석

  • Published : 2007.02.28

Abstract

In this study, transmission and reflection of multi-directional random waves propagating over impermeable submerged breakwaters are calculated by using eigenfunction expansion method. A series of mutiderectional random waves is generated by using the Bretschneider-Mitsuyasu frequency and Mitsuyasu type directional spectrum. Strong reflection is occurred at the Bragg reflection condition of the peak frequency. If the row of breakwaters is fixed at 3 and the relative height of breakwater is fixed at 0.6, more than 25% of incident wave energy is reflected to offshore. It is also found that the reflection of directionally spreading random waves increases as the maximum spreading parameter $s_{max}$ increases.

본 연구에서는 고유함수전개법을 사용하여 다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 통과와 반사를 계산하였다. 입사하는 다방향 불규칙파랑은 Bretschneider-Mitsuyasu 주파수 스펙트럼과 Mitsuyasu 타입의 방향스펙트럼을 사용하여 재현하였다. 첨두주파수의 Bragg 반사 조건에서 강한 반사가 발행하였다. 수중 방파제가 3열이고, 상대높이가 0.6일 때 입사하는 다방향 불규칙파 에너지의 25% 이상이 외해로 반사되었다. 그리고, 최대분산계수 $s_{max}$가 증가할 경우, 다방향 불규칙파랑의 반사율도 증가하였다.

Keywords

References

  1. 김도삼 (2000). 다열잠제에 의한 파랑의 전달율과 반사율. 대한토목학회논문집, 20(1B), 85-94
  2. 이종인, 조용식, 이정규 (1999). 경사지형에서의 Bragg 반사. 한국수자원학회논문집, 32(4), 447-455
  3. 이종인, 김영택, 조용식 (2003). 수중방파제 형상에 따른 규칙파의 반사실험, 한국해안해양공학회지, 15(3), 165-175
  4. 정재상, 조대희, 황종길, 조용식 (2004). 사각형형상 불투과성 수중방파제를 통과하는 불규칙파의 반사. 한국수자원학회논문집, 37(9), 729-736
  5. 조용식, 이종인, 김영택 (2002). 사각형형상 수중방파제의 반사에 관한 실험. 한국수자원학회논문집, 34(5), 563-573
  6. 조원철 (2004). 폭 변화에 따른 잠제의 파랑 차단 성능. 한국해안해양공학회지, 16(4), 206-212
  7. 황종길, 이승협, 조용식 (2004). 사각형형상 수중방파제에 의한 불규칙파의 변형. 한국수자원학회논문집, 37(11), 949-958
  8. Bailard, J.A., DeVries, J.W. and Kirby, J.T. (1992). Consideration in using Bragg reflection for storm erosion protection. J. Waterway, Port, Coastal and Ocean Eng., 118, 62-74 https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(62)
  9. Bretschneider, C.L. (1968). Significant waves and wave spectrum. Ocean Industry, Feb. 40-46
  10. Chang, H.-K. and Liou, J.-C. (2006). Long wave reflection from submerged trapezoidal breakwaters. Ocean Engineering, in press
  11. Cho, Y.-S. and Lee, C., (2000). Resonant reflection of waves over sinusoidally varying topographies. Journal of Coastal Research. 16(3), 870-876
  12. Goda, Y. (2000). Random Seas and Design of Maritime Structures. World Scientific, Singapore
  13. Goda, Y. and Suzuki, Y. (1975). Computation of refraction and diffraction of sea waves with Mitsuyasu's directional spectrum, Tech. Note Port and Harbour Res. Inst., No. 230. (in Japanese)
  14. Hur, D.-S. (2004). Deformation of multi-directional random waves passing over an impermeable submerged breakwater installed on a sloping bed. Ocean Engineering, 31(10), 1295-1311 https://doi.org/10.1016/j.oceaneng.2003.12.005
  15. Hur, D.-S., Kawashima, N. and Iwata, K. (2003). Experimental study of the breaking limit of multi-directional random waves passing over an impermeable submerged breakwater. Ocean Engineering, 30(15), 1923-1940 https://doi.org/10.1016/S0029-8018(03)00046-5
  16. Hsu, T.-W., Hsieh, C.-M. and Hwang, R.R. (2004) Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters. Coastal Engineering, 51(7), 557-579 https://doi.org/10.1016/j.coastaleng.2004.06.003
  17. Johnson, H.K., Karambas, T.V., Avgeris. I,, Zanuttigh B., Gonzalez-Marco. D. and Caceres. I. (2005). Modelling of waves and currents around submerged breakwaters. Coastal Engineering, 52(10-11), 949-969 https://doi.org/10.1016/j.coastaleng.2005.09.011
  18. Johnson, H.K. (2006). Wave modelling in the vicinity of submerged breakwaters. Coastal Engineering, 53(1), 39-48 https://doi.org/10.1016/j.coastaleng.2005.09.018
  19. Jung, J.-S. and Cho, Y.-S. (2005). Propagation of directionally spreading random waves over multi-arrayed submerged breakwaters. Proc. of the 3rd Inter. Conf. on Asian and Pacific Coasts., 167-170
  20. Lara, J.L., Garcia, N. and Losada, I.J. (2006). RANS modelling applied to random wave interaction with submerged permeable structures. Coastal Engineering, 53(5-6), 395-417 https://doi.org/10.1016/j.coastaleng.2005.11.003
  21. Mitsuyasu, H. (1970). On the growth of spectrum of wind-generated waves (2)-spectral shape of wind waves at finite fetch. Proc. Japanese Conf. Coastal Eng., 1-7. (in Japanese)
  22. Mitsuyasu, H. et. al. (1975). Observation of the directional spectrum of ocean waves using a cloverleaf buoy. J. Physical Oceanogr., 5(4), 750-760 https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  23. Rambabu, A.C. and Mani, J.S. (2005). Numerical prediction of performance of submerged breakwaters. Ocean Engineering, 32(10), 1235-1246 https://doi.org/10.1016/j.oceaneng.2004.10.023
  24. Rosada, I.J., Silva, R. and Rosada, M.A. (1996). Interaction of Non-breaking directional random waves with submerged breakwaters. Coastal Engineering, 28(3-4), 249-266 https://doi.org/10.1016/0378-3839(96)00020-8
  25. Tsai, C.-P., Chen, H.-B. and Lee, F.-C. (2006). Wave transformation over submerged permeable breakwater on porous bottom. Ocean Engineering, 33(11-12), 1623-1643 https://doi.org/10.1016/j.oceaneng.2005.09.006
  26. Ting, C.-L., Lin, M.-C. and Cheng, C.-Y. (2004). Porosity effects on non-breaking surface waves over permeable submerged breakwaters. Coastal Engineering, 50(4), 213-224 https://doi.org/10.1016/j.coastaleng.2003.10.003