• 제목/요약/키워드: maximal ideal

검색결과 141건 처리시간 0.021초

MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Cho, Young-Hyun
    • 대한수학회보
    • /
    • 제22권2호
    • /
    • pp.117-119
    • /
    • 1985
  • Let R be a commutative noetherian ring with 1.neq.0, denoting by .nu.(I) the cardinality of a minimal basis of the ideal I. Let A be a polynomial ring in n>0 variables with coefficients in R, and let M be a maximal ideal of A. Generally it is shown that .nu.(M $A_{M}$).leq..nu.(M).leq..nu.(M $A_{M}$)+1. It is well known that the lower bound is not always satisfied, and the most classical examples occur in nonfactional Dedekind domains. But in many cases, (e.g., A is a polynomial ring whose coefficient ring is a field) the lower bound is attained. In [2] and [3], the conditions when the lower bound is satisfied is investigated. Especially in [3], it is shown that .nu.(M)=.nu.(M $A_{M}$) if M.cap.R=p is a maximal ideal or $A_{M}$ (equivalently $R_{p}$) is not regular or n>1. Hence the problem of determining whether .nu.(M)=.nu.(M $A_{M}$) can be studied when p is not maximal, $A_{M}$ is regular and n=1. The purpose of this note is to provide some conditions in which the lower bound is satisfied, when n=1 and R is a regular local ring (hence $A_{M}$ is regular)./ is regular).

  • PDF

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

MAXIMALITY PRESERVING CONSTRUCTIONS OF MAXIMAL COMMUTATIVE SUBALGEBRAS OF MATRIX ALGEBRA

  • Song, Young-Kwon
    • 대한수학회보
    • /
    • 제49권2호
    • /
    • pp.295-306
    • /
    • 2012
  • Let (R, $m_R$, k) be a local maximal commutative subalgebra of $M_n$(k) with nilpotent maximal ideal $m_R$. In this paper, we will construct a maximal commutative subalgebra $R^{ST}$ which is isomorphic to R and study some interesting properties related to $R^{ST}$. Moreover, we will introduce a method to construct an algebra in $MC_n$(k) with i($m_R$) = n and dim(R) = n.

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

QUOTIENT RINGS INDUCED VIA FUZZY IDEALS

  • Liu, Yong-Lin;Meng, Jie;Xin, Xiao-Long
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.855-867
    • /
    • 2001
  • This note we give a construction of a quotient ring $R/{\mu}$ induced via a fuzzy ideal ${\mu}$ in a ring R. The Fuzzy First, Second and Third Isomorphism Theorems are established. For some applications of this construction of quotient rings, we show that if ${\mu}$ is a fuzzy ideal of a commutative ring R, then $\mu$ is prime (resp. $R/{\mu}$ is a field, every zero divisor in $R/{\mu}$ is nilpotent). Moreover we give a simpler characterization of fuzzy maximal ideal of a ring.

ON COVERING AND QUOTIENT MAPS FOR 𝓘𝒦-CONVERGENCE IN TOPOLOGICAL SPACES

  • Debajit Hazarika;Ankur Sharmah
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.267-280
    • /
    • 2023
  • In this article, we show that the family of all 𝓘𝒦-open subsets in a topological space forms a topology if 𝒦 is a maximal ideal. We introduce the notion of 𝓘𝒦-covering map and investigate some basic properties. The notion of quotient map is studied in the context of 𝓘𝒦-convergence and the relationship between 𝓘𝒦-continuity and 𝓘𝒦-quotient map is established. We show that for a maximal ideal 𝒦, the properties of continuity and preserving 𝓘𝒦-convergence of a function defined on X coincide if and only if X is an 𝓘𝒦-sequential space.

APPROXIMATION IN LIPSCHITZ ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

  • Honary, T.G.;Mahyar, H.
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.629-636
    • /
    • 1999
  • We introduce Lipschitz algebras of differentiable functions of a perfect compact plane set X and extend the definition to Lipschitz algebras of infinitely differentiable functions of X. Then we define the subalgebras generated by polynomials, rational functions, and analytic functions in some neighbourhood of X, and determine the maximal ideal spaces of some of these algebras. We investigate the polynomial and rational approximation problems on certain compact sets X.

  • PDF

ON WEAK II-REGULARITY AND THE SIMPLICITY OF PRIME FACTOR RINGS

  • Kim, Jin-Yong;Jin, Hai-Lan
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.151-156
    • /
    • 2007
  • A connection between weak ${\pi}-regularity$ and the condition every prime ideal is maximal will be investigated. We prove that a certain 2-primal ring R is weakly ${\pi}-regular$ if and only if every prime ideal is maximal. This result extends several known results nontrivially. Moreover a characterization of minimal prime ideals is also considered.