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APPROXIMATION IN LIPSCHITZ ALGEBRAS OF
INFINITELY DIFFERENTIABLE FUNCTIONS

T. G. HONARY AND H. MAHYAR

ABSTRACT. We introduce Lipschitz algebras of differentiable func-
tions on a perfect compact plane set X and then extend the defini-
tion to Lipschitz algebras of infinitely differentiable functions on X.
Then we define the subalgebras generated by polynomials, rational
functions, and analytic functions in some neighbourhood of X , and
determine the maximal ideal spaces of some of these algebras. We
investigate the polynomial and ratlonal approximation problems on
certain compact sets X.

Let X be a perfect compact plane set, and let 0 < o < 1. The algebra
of all complex-valued functions f on X for which

pa(f)=sup{,f—(|?-——lc@ eXw#y}

is denoted by Lip(X, a) and the subalgebra of those functions f for which
|f(z) = fW)l/lz = y|* — 0 as |z —y| — 0, by £ip(X, a). These Lipschitz
algebras were first studied by Sherbert [6] The algebras Lip(X, ) for
a <1 and ¢ip(X, a) for o < 1 are Banach function algebras on X under
the norm |[flla = [Ifllx + pa(f), where ||fllx = sup,ex f(z)]. It is
interesting to note that Lip(X, 1) C lip(X, a). In fact, Lip(X, 1) is dense
in lip(X, ) [1].

A complex-valued function f on X is called differentiable on X if at
each point z, € X,

f'(20) =lim{M : zeX,z—ezo}

zZ— 2y
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exists.

DEFINITION 1. The algebra of functions f on X whose derivatives up
to order 7 exist and for each k (0 < k < n), f®) € Lip(X, @) is denoted
by Lip"(X,a). The algebra ¢ip"(X, ) is defined in a similar way. For f
in Lip"(X,a) or in Lip™(X, a), let

m Ol S P+ pal

The algebra of functions f with derivatives of all orders for which f® e
Lip(X,a) (f® € lip(X,a)) for all k is denoted by Lip®(X,a) (£ip™
(X, &)

We also introduce certain subalgebras of Lip®(X, o) and £ip®(X, a).
Let M = {M;}, be a sequence of positive numbers such that

M, k
Mo—]. and mZ(r) T—O,l,...,k.

Whenever we refer to M = {M;} we mean this sequence satisfies the

above conditions.
IIf(")Ila }
)

: <ol

DEFINITION 2. Let

Lip(X, M, ) = {f € Lip™(

lip(X, M, o) = {f € lip™(

and for f in Lip(X, M, a) or in Ezp(

e}

)

11l =

k=0

For convenience, we regard Lip"(X,a) and £ip™(X,a) as being alge-
bras of the type Lip(X, M, @) and ip(X, M, a), respectively, by setting
My=K (k=0,1,...,n)and /M =0 (k=n+1,...).

These algebras have similar properties to D*(X), the algebra of func-
tions on X with continuous n'* derivatives, and D(X, M), the algebra of
infinitely differentiable functions f on X such that || f|l = 22, || f &)\ x / My
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< o0, which were introduced by Dales and Davie [2]. It is also known
that D'(X) C R(X), where R(X) is the uniform closure of Ry(X), the
algebra of all rational functions with poles off X [2].

Now we introduce the type of compact sets which we shall consider.

DEFINITION 3. Let X be a compact plane set which is connected by
rectifiable arcs, and suppose §(z, w) is the geodesic metric on X, the
infimum of the lengths of the arcs joining z and w.

(i) X is called regular if for each zp € X there exists a constant C
such that for all z € X, §(z, z) < Clz — 2.

(ii) X is called uniformly regular if there exists a constant C such that
for all z,w € X, §(2,w) < C|z —w|.

IfX is a finite union of regular sets then for each 2y € X there exists
a constant C such that for every z € X and any f € DY(X),

1£(z) = f(20)] < Clz — 20l (I fllx + [l x)-

This inequality implies that D(X) is complete under the norm || f||; =
Ifllx + If'llx [2]. It is also interesting to note that the above condition
is, in fact, a necessary and sufficient condition for the completeness of
DY(X). To see this, let D'(X) be complete and define another norm on
DY(X) by

WA = 1l + 1l + sup 1L =T (o)l
2€X ‘Z ZO‘

2#29

(f € DY(X)),

where 2 is a fixed point in X. Then D'(X) is also a Banach function
algebra on X under this new norm. Thus there exists a constant C such
that for all f € D}(X) and for every z € X

f(2) = f(z)] < Clz — 20l (i fllx + 1llx)-

The completeness of D*(X) implies that Lip(X, M, @) and lip(X, M, )
are Banach function algebras on X. From now on we assume that X is a
perfect compact plane set such that D'(X) is complete, unless otherwise
specified. '

Now we introduce subalgebras of Lip(X, M, &) and lip(X, M, a).

DEFINITION 4. The closed subalgebra of Lip(X, M, a) (¢éip(X, M, a))
which is generated by the polynomials, by the rational functions with
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poles off X that belong to Lip(X, M, o) (¢ip(X, M, a)), or by those func-
tions of Lip(X, M, a) (¢ip(X, M, a)) which are analytic in some neigh-
bourhood of X, is denoted by Lipp(X, M, ) (¢ipp(X, M, a)), Lipgp(X,
M, a) (Cipr(X, M,a)) or Lipy(X, M, a) (¢ipg(X, M, a)), respectively.

Clearly Lipp(X, M, ) is uniformly dense in P(X), the uniform clo-
sure of polynomials. Moreover, when /M /k! — o0 as k — 0o, we
have Ro(X) C Lip(X, M, 1), so Lip(X, M, 1) and hence ¢ip(X, M, ) and
Lip(X, M, &) are uniformly dense in R(X). In particular, Lipr(X, M, a)
is uniformly dense in R(X). For convenience, we set P, = {/ M} /k!. Note
that, when Py — oo as k — oo, Lipgp(X, M, a) is generated by the all
rational functions with poles off X, and hence it is a natural Banach
function algebra on X. So by the Theorem in [4] we have My, (x m,0) =
Mp(x) & X , where M4 is the maximal ideal space of the algebra A. Thus
when P, — oo as k — oo, Lipp(X, M, a) = Lipp(X, M, a) if and only
if X = X. Also when P, — oo as k — oo, by the Functional Calculus
Theorem [3; 3.4.5|, Lipr(X, M, ) contains all analytic functions in a
neighbourhood of X, and so Lipr(X, M, a) = Lipg(X, M, a).

THEOREM 1. For each n > 0, fip"(X, a) and Lip"(X, a) are natural
Banach function algebras on X.

Proof. The algebras fip(X, ) and Lip(X,a) are uniformly dense in
C(X) [6], and for n > 1, ¢ip"(X, @) and Lip"(X, a) are uniformly dense
in R(X). By the naturality of C(X) and R(X), and the Theorem in (4],
it is sufficient to prove that for each f € Lip™(X, a) we have || f|| < || fllx,
where f is the Gelfand transform of f.

But straightforward calculations show that:

1™l < 27°6mm|fl™,  (0<k<n)
Pal(f™#] < 2¥mm NG Y[ flm T, (0<k <n)

for all m > n, where § and X\ are constants independent of m and &%.
Hence

L1 < £ ™ ((n + 1)2% 6 m™ Y™ (8 + mA) ™,

Therefore || f|| = limm—oo|| f™|/™ < || f|lx. This completes the proof of
the theorem. O
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We recall that lipp(X, ) (¢ipp(X,)) is the closed subalgebra of
lip(X, @) which is generated by polynomials (rational functions with
poles off X) and #ips(X, a).is defined by £ipa(X, o) = A(X)N¥4ip(X, ),
where A(X) is the uniform algebra of functions which are continuous
on X and analytic in the interior of X. It is interesting to note that
lipa(X, a) is a natural Banach function algebra on X [5].

THEOREM 2. If X is uniformly regular and lipp(X, o) = lipa(X, )
then liph (X, a) = Lip(X,a) for alln > 1 and o < 1.

Proof. As we know if f € D'(X) then p,(f) < Cd*~*||f'||x, where d =
diam(X). Now let n > 1 and f € £ip*(X, a). Since f® € lipy(X,a) =
lipp(X, «), for every € > O there exists a polynomial P, such that

177 = Pllapcza) = 1£) = Polx + pa(£®) = Fy) <.

Let 2z be a fixed point in X and P, be the antiderivative of Py with the
initial condition Py(z) = f®™ V(). Since f®D —~ P, € tip(X,a) C
D'(X) we have

Pa(f™V = P) < Cd*" || f™ — By||x < Cd' 2.

Continuing in this manner, we obtain polynomials P, Ps, ... , P, such
that P]; = -Pk—b Pk(Z()) = f(n_k)(Z()), Hf(n_k) - Pk“X < deké, and
Pa(f®® — B < Ckd*~¢ for k = 1,2,...,n. Clearly P = P,_,
on X and .

~1 Ok gn—ke + Ok gn—k-ae p

If =P ”Z’lp"(Xa < Z x + ==
k= ’ )

for some constant A. Hence f € liph(X, a). O

Now we investigate rational approximation on circles and annuli. We
note that when X is uniformly regular and « < 1, then Zip(X, M, ) =
Lip(X, M, a) if 1/Mj, # 0 for infinitely many k.

THEOREM 3. If T = {z € C : |z — 2| = R} then lipp(T, M, a) =
lip(T, M, o). :

Proof. We assume that 2z = 0 and R = 1. Let f € £ip(T, M, o) and
> a;2’ be the Fourier series generated by f, where a; = £ [7 f(e?)
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e~9d0. The Cesaro means of this series are
. 1 L . 1 4 X
0y _ it _ — i(6~t)
onle?) = 5- /_ HEKA0 - ) = o /_ IO 0t

where K, (t) is the Fejer kernel. It is known that o, is a rational function
on T with the only pole z =0, and ||o, — f|l7 — 0 as n — oo. Since for
each k > 0, f® is continuous on T we have

o¥(2) = - / TG K ()dt (2 € T),

Com ),
and so [lo%|l7 < || f® ]Iz
On the other hand,
jow(2) — o’ (w)| _ 1 / |f® (ze) — fO (we))

|z — w|* - 2 |ze=® — we—it|®

Kn(t)dt < pa(f¥).

-

Hence pa(a,(lk)) < po(f®) and so o, € lipr(T, M, ).
Now we prove that ||o, — fl|eipr,ma) — 0 as n — oco. Since

lon = fllepame) < 21 fllep@,ma),

by the dominated convergence theorem, it is enough to show that for
each k >0, [[o%) — f®||7 + pa(o — F®) = 0 as n — oo.

By the uniform continuity of each f*) on T we have ||a,(lk) —f®r —0
as n — 00.

Since f® € flip(T,a), for € > 0 there exists § > 0 such that for all
zyw €T, if 0 < |2 —w| < & then |f®)(2) — f®)(w)|/|z — w|* < €/2. Let
k>0and z,w €T, (2 #w). If |z—w| <4, then

00 (2) — f®(2) — o (w) + f® (w)]
|z — wl*

< €.

If |2 — w| > ¢ and n is large enough, then

01(2) = f9(z) — oP(w) + FO(w)] _ 2ot — D]l -
== uf° Sow |

Hence pa(agk) — f%)) — 0 as n — oo. This completes the proof of the

theorem. O
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REMARK. Note that the following results are not satisfied when
lip(X, M, a) reduces to £ip(X, ). But in these cases we have lipp(X, o) =
lipa(X, o). :

THEOREM 4. If X = {zEC:r <|z — 2| < R}, where 0 < r < R,
then lipr(X, M, a) = lip(X, M, a).

Proof. Without loss of generality we can assume that z; = 0. Let
[ € tip(X, M, ). Since f is analytic in r < |z| < R it has a Lau-
rent series of the form f(z) = >-% a;2’ on r < |z| < R, where a; =
(2mp?)~L [T e7i3t f(pet)dt, for r < p < R. The Cesaro means of the Lau-
rent series of f is

1 [ ~
o) = = [ S K0d (< el < B),
where K,,(t) is the Fejer kernel. Clearly for each k > 0 we have
o®(z) = 2% / e fE (2e K, (t)dt  (r <|z| < R),

and so |(7,(Lk)(z)[ < ||f®||x for r < |z| < R. Since o, is a rational function

with the only pole z = 0, o) is analytic in r < |2| < R. Therefore the
above inequality holds for all z in r < |z| < R. Hence Ha,(fc) x < IIF® N x
and po (o) < po(f®) for all k£ > 0 and for every positive integer n, and
so o, € lipr(X, M, a).

Now we can proceed exactly the same as in the proof of theorem 3 to
show that |0, — fleisx,1,0) — O as n — 00. Therefore f € Lipp(X, M, )
and this completes the proof of the theorem. O

If r — 0, the above theorem implies the following result.
COROLLARY 1. IfX = {z: |z| < R} thenlipp(X, M, o) = tip(X, M, c).

THEOREM 5. Let X be a regular set for which there exists 25 € X
such that for 0 < f < 1, B(z — z) + 2 € intX for all z € X. Or,
equivalently, the segment [zy, z) is contained in the interior of X for all
z€ X. If P, — 00 as k — oo, then lipp(X, M, o) = lip(X, M, o).

Proof. Clearly X is star-shaped and so it is polynomially convex. Thus

lipp(X, M, ) = lipr(X, M, @) = lipg(X, M, @).
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Without loss of generality we can assume that zy = 0. By the hypothesis
for each positive integer n and every z € X, r,z € intX, where r, =
n/(n +1). Let f € ¢ip(X, M, @) and define the sequence {f,} on X by
fa(z) = f(rnz). Each f, is analytic in a neighbourhood of X and so
fn € tipg(X, M, a). Moreover for each k > 0, fﬁk)(z) = 7k f®)(r,2) and
so [ A70x < 1O lx, alfi) < pa(f®) for all k 2 0 and every n. By

the uniform continuity of each f® on X, lim_sllfs) — f®|x = 0.

Since f® € £ip(X, ) for each k > 0, pa(f ~ f®) — 0 as n — oo.
Consequently by the dominated convergence theorem || f, — flleip(x.0,0) —
0 as n — oo, and so f € fipy(X, M, a). a

COROLLARY 2. If X is a compact convex set with non-empty interior
and P, — oo as k — oo, then fipp(X, M, ) = Lip(X, M, a).
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