• Title/Summary/Keyword: maximal ideal

Search Result 141, Processing Time 0.023 seconds

MAXIMAL CHAIN OF IDEALS AND n-MAXIMAL IDEAL

  • Hemin A. Ahmad;Parween A. Hummadi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.331-340
    • /
    • 2023
  • In this paper, the concept of a maximal chain of ideals is introduced. Some properties of such chains are studied. We introduce some other concepts related to a maximal chain of ideals such as the n-maximal ideal, the maximal dimension of a ring S (M. dim(S)), the maximal depth of an ideal K of S (M.d(K)) and maximal height of an ideal K(M.d(K)).

FUZZY MAXIMAL P-IDEALS OF BCI-ALGEBRAS

  • JUN, YOUNG BAE;HONG, SUNG MIN
    • Honam Mathematical Journal
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • Our task will be to set up a fuzzy maximal p-ideal in BCI-algebras. We construct a new fuzzy p-ideal from old. We also prove that every fuzzy maximal p-ideal is normalized, and takes only the values {0.1}.

  • PDF

On 2-absorbing Primary Ideals of Commutative Semigroups

  • Mandal, Manasi;Khanra, Biswaranjan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.425-436
    • /
    • 2022
  • In this paper we introduce the notion of 2-absorbing primary ideals of a commutative semigroup. We establish the relations between 2-absorbing primary ideals and prime, maximal, semiprimary and 2-absorbing ideals. We obtain various characterization theorems for commutative semigroups in which 2-absorbing primary ideals are prime, maximal, semiprimary and 2-absorbing ideals. We also study some other important properties of 2-absorbing primary ideals of a commutative semigroup.

On Rings Containing a Non-essential nil-Injective Maximal Left Ideal

  • Wei, Junchao;Qu, Yinchun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.179-188
    • /
    • 2012
  • We investigate in this paper rings containing a non-essential $nil$-injective maximal left ideal. We show that if R is a left MC2 ring containing a non-essential $nil$-injective maximal left ideal, then R is a left $nil$-injective ring. Using this result, some known results are extended.

Generalizations of V-rings

  • Song, Xianmei;Yin, Xiaobin
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • In this paper, we introduce a new notion which we call a generalized weakly ideal. We also investigate characterizations of strongly regular rings with the condition that every maximal left ideal is a generalized weakly ideal. It is proved that R is a strongly regular ring if and only if R is a left GP-V-ring whose every maximal left (right) ideal is a generalized weakly ideal. Furthermore, if R is a left SGPF ring, and every maximal left (right) ideal is a generalized weakly ideal, it is shown that R/J(R) is strongly regular. Several known results are improved and extended.

  • PDF

ON THE STRUCTURES OF CLASS SEMIGROUPS OF QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONG TAE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2004
  • Buchmann and Williams[1] proposed a key exchange system making use of the properties of the maximal order of an imaginary quadratic field. $H{\ddot{u}}hnlein$ et al. [6,7] also introduced a cryptosystem with trapdoor decryption in the class group of the non-maximal imaginary quadratic order with prime conductor q. Their common techniques are based on the properties of the invertible ideals of the maximal or non-maximal orders respectively. Kim and Moon [8], however, proposed a key-exchange system and a public-key encryption scheme, based on the class semigroups of imaginary quadratic non-maximal orders. In Kim and Moon[8]'s cryptosystem, a non-invertible ideal is chosen as a generator of key-exchange ststem and their secret key is some characteristic value of the ideal on the basis of Zanardo et al.[9]'s quantity for ideal equivalence. In this paper we propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structure of the class semigroup of non-maximal order as finitely disjoint union of groups with some quantities correctly. And then we correct the misconceptions of Zanardo et al.[9] and analyze Kim and Moon[8]'s cryptosystem.

  • PDF

The Structure of Maximal Ideal Space of Certain Banach Algebras of Vector-valued Functions

  • Shokri, Abbas Ali;Shokri, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.189-195
    • /
    • 2014
  • Let X be a compact metric space, B be a unital commutative Banach algebra and ${\alpha}{\in}(0,1]$. In this paper, we first define the vector-valued (B-valued) ${\alpha}$-Lipschitz operator algebra $Lip_{\alpha}$ (X, B) and then study its structure and characterize of its maximal ideal space.

The Maximal Ideal Space of Extended Differentiable Lipschitz Algebras

  • Abolfathi, Mohammad Ali;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.117-125
    • /
    • 2020
  • In this paper, we first introduce new classes of Lipschitz algebras of infinitely differentiable functions which are extensions of the standard Lipschitz algebras of infinitely differentiable functions. Then we determine the maximal ideal space of these extended algebras. Finally, we show that if X and K are uniformly regular subsets in the complex plane, then R(X, K) is natural.

ON RINGS CONTAINING A P-INJECTIVE MAXIMAL LEFT IDEAL

  • Kim, Jin-Yong;Kim, Nam-Kyun
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.629-633
    • /
    • 2003
  • We investigate in this paper rings containing a finitely generated p-injective maximal left ideal. We show that if R is a semiprime ring containing a finitely generated p-injective maximal left ideal, then R is a left p-injective ring. Using this result we are able to give a new characterization of von Neumann regular rings with nonzero socle.

FURTHER STUDY OF RINGS IN WHICH ESSENTIAL MAXIMAL RIGHT IDEALS ARE GP-INJECTIVE

  • SANGBOK NAM;TAEHEE LEE;HWAJOON KIM
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1173-1180
    • /
    • 2023
  • In this paper, rings in which essential maximal right ideals are GP-injective are studied. Whether the rings with this condition satisfy von Neumann regularity is the goal of this study. The obtained research results are twofold: First, it was shown that this regularity holds even when the reduced ring is replaced with π-IFP and NI-ring. Second, it was shown that this regularity also holds even when the maximal right ideal is changed to GW-ideal. This can be interpreted as an extension of the existing results.