• Title/Summary/Keyword: maximal

Search Result 3,837, Processing Time 0.029 seconds

A Heuristic Algorithm for the Reliability Optimization of a Distributed Communication Network

  • Hung, Chih-Young;Yang, Jia-Ren;Park, Dong-Ho;Liu, Yi-Hsin
    • International Journal of Reliability and Applications
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • A heuristic algorithm for reliability optimization of a distributed network system is developed so that the reliability of a large system can be determined efficiently. This heuristic bases on the determination of maximal reliability set of maximum node capacity, maximal link reliability and maximal node degree.

  • PDF

CERTAIN CLASS OF QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC SPACE FORM

  • Kim, Hyang Sook;Pak, Jin Suk
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.147-161
    • /
    • 2013
  • In this paper we determine certain class of $n$-dimensional QR-submanifolds of maximal QR-dimension isometrically immersed in a quaternionic space form, that is, a quaternionic K$\ddot{a}$hler manifold of constant Q-sectional curvature under the conditions (3.1) concerning with the second fundamental form and the induced almost contact 3-structure.

The Maximal Ideal Space of Extended Differentiable Lipschitz Algebras

  • Abolfathi, Mohammad Ali;Ebadian, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.117-125
    • /
    • 2020
  • In this paper, we first introduce new classes of Lipschitz algebras of infinitely differentiable functions which are extensions of the standard Lipschitz algebras of infinitely differentiable functions. Then we determine the maximal ideal space of these extended algebras. Finally, we show that if X and K are uniformly regular subsets in the complex plane, then R(X, K) is natural.

ON RINGS CONTAINING A P-INJECTIVE MAXIMAL LEFT IDEAL

  • Kim, Jin-Yong;Kim, Nam-Kyun
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.629-633
    • /
    • 2003
  • We investigate in this paper rings containing a finitely generated p-injective maximal left ideal. We show that if R is a semiprime ring containing a finitely generated p-injective maximal left ideal, then R is a left p-injective ring. Using this result we are able to give a new characterization of von Neumann regular rings with nonzero socle.

OPENLY SEMIPRIMITIVE PROJECTIVE MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.619-637
    • /
    • 2004
  • In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.

BOUNDEDNESS OF THE STRONG MAXIMAL OPERATOR WITH THE HAUSDORFF CONTENT

  • Saito, Hiroki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.399-406
    • /
    • 2019
  • Let n be the spatial dimension. For d, $0<d{\leq}n$, let $H^d$ be the d-dimensional Hausdorff content. The purpose of this paper is to prove the boundedness of the dyadic strong maximal operator on the Choquet space $L^p(H^d,{\mathbb{R}}^n)$ for min(1, d) < p. We also show that our result is sharp.

MEASURE OF MAXIMAL ENTROPY FOR STAR MULTIMODAL MAPS

  • Attarzadeh, Fatemeh;Tajbakhsh, Khosro
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • Let f : [0, 1] → [0, 1] be a multimodal map with positive topological entropy. The dynamics of the renormalization operator for multimodal maps have been investigated by Daniel Smania. It is proved that the measure of maximal entropy for a specific category of Cr interval maps is unique.

FUZZY COMPACTNESS, FUZZY REGULARITY VIA FUZZY MAXIMAL OPEN AND FUZZY MINIMAL CLOSED SETS

  • SWAMINATHAN, A.;SIVARAJA, S.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.185-190
    • /
    • 2022
  • The aim of this article is to define fuzzy maximal open cover and discuss its few properties. we also defined and study fuzzy m-compact space and discussed its properties. Also we obtain few more results on fuzzy minimal c-regular and fuzzy minimal c-normal spaces. We have proved that a fuzzy Haussdorff m-compact space is fuzzy minimal c-normal.

On 2-absorbing Primary Ideals of Commutative Semigroups

  • Mandal, Manasi;Khanra, Biswaranjan
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.425-436
    • /
    • 2022
  • In this paper we introduce the notion of 2-absorbing primary ideals of a commutative semigroup. We establish the relations between 2-absorbing primary ideals and prime, maximal, semiprimary and 2-absorbing ideals. We obtain various characterization theorems for commutative semigroups in which 2-absorbing primary ideals are prime, maximal, semiprimary and 2-absorbing ideals. We also study some other important properties of 2-absorbing primary ideals of a commutative semigroup.