CERTAIN CLASS OF $Q R$-SUBMANIFOLDS OF MAXIMAL $Q R$-DIMENSION IN QUATERNIONIC SPACE FORM

Hyang Sook Kim and Jin Suk Pak

Abstract

In this paper we determine certain class of n-dimensional $Q R$-submanifolds of maximal $Q R$-dimension isometrically immersed in a quaternionic space form, that is, a quaternionic Kähler manifold of constant Q-sectional curvature under the conditions (3.1) concerning with the second fundamental form and the induced almost contact 3 -structure.

1. Introduction

Let M be a connected real n-dimensional submanifold of real codimension p of a quaternionic Kähler manifold \bar{M} with quaternionic Kähler structure $\{F, G, H\}$. If there exists an r-dimensional subbundle ν of the normal bundle $T M^{\perp}$ such that

$$
\begin{aligned}
& F \nu_{x} \subset \nu_{x}, G \nu_{x} \subset \nu_{x}, H \nu_{x} \subset \nu_{x} \\
& F \nu_{x}^{\perp} \subset T_{x} M, G \nu_{x}^{\perp} \subset T_{x} M, H \nu_{x}^{\perp} \subset T_{x} M
\end{aligned}
$$

at each point x in M, then M is called a $Q R$-submanifold of $r Q R$ dimension, where ν^{\perp} denotes the complementary orthogonal distribution to ν in $T M^{\perp}$ (cf. [1], [4], [7], [9] and [10] etc.). Real hypersurfaces, which are typical examples of $Q R$-submanifold with $r=0$, have been investigated in many papers (cf. [11], [12] and [13] etc.) in connection with the shape operator and the induced almost contact 3-structure (for definition, see [8]).

[^0]On the other hand, for a $Q R$-submanifold M of maximal $Q R$-dimension, (that is, $(p-1) Q R$-dimension) we can take a distinguished normal vector field ξ to M, where p is the codimension of M so that $\nu^{\perp}=\operatorname{Span}\{\xi\}$. Recently many authors (cf. [4], [7], [9] and [10]) studied $Q R$-submanifolds M of maximal $Q R$-dimension in a quaternionic space form under the following additional condition :

The distinguished normal vector field ξ is parallel with respect to the normal connection induced on the normal bundle of M.

In this paper we shall determine a $Q R$-submanifold M of maximal $Q R$-dimension isometrically immersed in a quaternionic space form which satisfy the assumptions

$$
\begin{aligned}
& h(\phi X, Y)-h(X, \phi Y)=2 g(\phi X, Y) \eta, \\
& h(\psi X, Y)-h(X, \psi Y)=2 g(\psi X, Y) \eta, \\
& h(\theta X, Y)-h(X, \theta Y)=2 g(\theta X, Y) \eta
\end{aligned}
$$

for a normal vector field η to M without the additional condition above, where it is denoted by h the second fundamental form, $\{\phi, \psi, \theta\}$ the induced almost contact 3 -structure on M (see $\S 2$) and g the Riemannian metric tensor of M induced from that of \bar{M}.

All manifolds, submanifolds and geometric objects will be assumed to be connected, differentiable and of class C^{∞}, and all maps also be of class C^{∞} if not stated otherwise.

2. Preliminaries

Let \bar{M} be a real $(n+p)$-dimensional quaternionic Kählerian manifold. Then, by definition, there is a 3 -dimensional vector bundle V consisting of tensor fields of type (1,1) over \bar{M} satisfying the following conditions (a), (b) and (c) :
(a) In any coordinate neighborhood $\overline{\mathcal{U}}$, there is a local basis $\{F, G$, $H\}$ of V such that

$$
\begin{align*}
& F^{2}=-I, G^{2}=-I, H^{2}=-I, \\
& F G=-G F=H, G H=-H G=F, H F=-F H=G . \tag{2.1}
\end{align*}
$$

(b) There is a Riemannian metric \bar{g} which is Hermitian with respect to all of F, G and H.
(c) For the Riemannian connection $\bar{\nabla}$ with respect to \bar{g}

$$
\left(\begin{array}{c}
\bar{\nabla} F \tag{2.2}\\
\bar{\nabla} G \\
\bar{\nabla} H
\end{array}\right)=\left(\begin{array}{ccc}
0 & r & -q \\
-r & 0 & p \\
q & -p & 0
\end{array}\right)\left(\begin{array}{c}
F \\
G \\
H
\end{array}\right)
$$

where p, q and r are local 1-forms defined in $\overline{\mathcal{U}}$. Such a local basis $\{F, G, H\}$ is called a canonical local basis of the bundle V in $\overline{\mathcal{U}}$ (cf. [5] and [6]).

For canonical local bases $\{F, G, H\}$ and $\left\{{ }^{\prime} F,{ }^{\prime} G,{ }^{\prime} H\right\}$ of V in coordinate neighborhoods $\overline{\mathcal{U}}$ and $\overline{\mathcal{U}}$ respectively, it follows that in $\overline{\mathcal{U}} \cap \overline{\mathcal{U}}$

$$
\left(\begin{array}{c}
{ }^{\prime} F \\
{ }^{\prime} G \\
{ }^{\prime} H
\end{array}\right)=\left(s_{x y}\right)\left(\begin{array}{c}
F \\
G \\
H
\end{array}\right) \quad(x, y=1,2,3)
$$

where $s_{x y}$ are local differentiable functions with $\left(s_{x y}\right) \in S O(3)$ as a consequence of (2.1). It is well known that every quaternionic Kählerian manifold is orientable (cf. [5] and [6]).

Now let M be an n-dimensional $Q R$-submanifold of maximal $Q R$ dimension, namely, $(p-1) Q R$-dimension isometrically immersed in \bar{M}. Then by definition there is a unit normal vector field ξ such that $\nu_{x}^{\perp}=$ $\operatorname{Span}\{\xi\}$ at each point x in M. We set

$$
\begin{equation*}
U=-F \xi, \quad V=-G \xi, \quad W=-H \xi \tag{2.3}
\end{equation*}
$$

Denoting by \mathcal{D}_{x} the maximal quaternionic invariant subspace

$$
T_{x} M \cap F T_{x} M \cap G T_{x} M \cap H T_{x} M
$$

of $T_{x} M$, we have $\mathcal{D}_{x}^{\perp} \supset \operatorname{Span}\{U, V, W\}$, where \mathcal{D}_{x}^{\perp} is the complementary orthogonal subspace to \mathcal{D}_{x} in $T_{x} M$. But, using (2.1) and (2.3), we can prove that $\mathcal{D}_{x}^{\perp}=\operatorname{Span}\{U, V, W\}$ (cf. [1] and [10]). Thus we have

$$
T_{x} M=\mathcal{D}_{x} \oplus \operatorname{Span}\{U, V, W\}, \quad{ }^{\forall} x \in M
$$

which together with (2.1) and (2.3) implies

$$
F T_{x} M, G T_{x} M, H T_{x} M \subset T_{x} M \oplus \operatorname{Span}\{\xi\}
$$

Therefore, for any tangent vector field X and for a local orthonormal basis $\left\{\xi_{\alpha}\right\}_{\alpha=1, \ldots, p}\left(\xi_{1}:=\xi\right)$ of normal vectors to M, we have the following decompsition in tangential and normal components :

$$
\begin{gather*}
F X=\phi X+u(X) \xi, \quad G X=\psi X+v(X) \xi \\
H X=\theta X+w(X) \xi \tag{2.4}
\end{gather*}
$$

$$
\begin{equation*}
F \xi_{\alpha}=\sum_{\beta=2}^{p} P_{1 \alpha \beta} \xi_{\beta}, \quad G \xi_{\alpha}=\sum_{\beta=2}^{p} P_{2 \alpha \beta} \xi_{\beta}, \quad H \xi_{\alpha}=\sum_{\beta=2}^{p} P_{3 \alpha \beta} \xi_{\beta} \tag{2.5}
\end{equation*}
$$

where $\alpha=2, \ldots, p$. Then it is easily seen that ϕ, ψ and θ are skewsymmetric endomorphisms acting on $T_{x} M$. Moreover, from (2.3), (2.4), (2.5) and the Hermitian property of $\{F, G, H\}$, it follows that

$$
\begin{align*}
& g(U, X)=u(X), \quad g(V, X)=v(X) \quad g(W, X)=w(X), \\
& u(U)=1, \quad v(V)=1, \quad w(W)=1, \tag{2.6}\\
& \phi U=0, \quad \psi V=0, \quad \theta W=0 .
\end{align*}
$$

Next, applying F to the first equation of (2.4) and making use of (2.3), (2.4) and (2.6), we have

$$
\phi^{2} X=-X+u(X) U, \quad u(\phi X)=0 .
$$

Similarly taking account of the second and the third equations of (2.4), we obtain consequently

$$
\begin{gather*}
\phi^{2} X=-X+u(X) U, \quad \psi^{2} X=-X+v(X) V \tag{2.7}\\
\theta^{2} X=-X+w(X) W \\
u(\phi X)=g(\phi X, U)=0, v(\psi X)=g(\psi X, V)=0 \tag{2.8}\\
w(\theta X)=g(\theta X, W)=0
\end{gather*}
$$

Applying G and H respectively to the first equation of (2.4) and using (2.1), (2.3) and (2.4), we get

$$
\begin{aligned}
\theta X+w(X) \xi & =-\psi(\phi X)-v(\phi X) \xi+u(X) V, \\
\psi X+v(X) \xi & =\theta(\phi X)+w(\phi X) \xi-u(X) W,
\end{aligned}
$$

respectively. Thus we can see that

$$
\begin{align*}
& \psi(\phi X)=-\theta X+u(X) V, \quad v(\phi X)=-w(X), \\
& \theta(\phi X)=\psi X+u(X) W, \quad w(\phi X)=v(X) . \tag{2.9}
\end{align*}
$$

Therefore, according to similar method as the above, the second and the third equations of (2.4) also yield respectively

$$
\begin{align*}
\phi(\psi X) & =\theta X+v(X) U, \quad u(\psi X)=w(X) \\
\theta(\psi X) & =-\phi X+v(X) W, \quad w(\psi X)=-u(X), \tag{2.10}\\
\phi(\theta X) & =-\psi X+w(X) U, \quad u(\theta X)=-v(X), \\
\psi(\theta X) & =\phi X+w(X) V, \quad v(\theta X)=u(X) . \tag{2.11}
\end{align*}
$$

Furthermore, from (2.8) joined with the skew-symmetry of ϕ, ψ and θ, it follows that

$$
\begin{align*}
& \psi U=-W, \quad v(U)=0, \quad \theta U=V, \quad w(U)=0 \\
& \phi V=W, \quad u(V)=0, \quad \theta V=-U, \quad w(V)=0 \tag{2.12}\\
& \phi W=-V, \quad u(W)=0, \quad \psi W=U, \quad v(W)=0
\end{align*}
$$

where we have used (2.9), (2.10) and (2.11).
The equations (2.6)-(2.12) tell us that M admits the so-called almost contact 3 -structure (for definition, see [8]) and consequently the dimension of M satisfies the equality $n=4 m+3$ for some integer m.

On the other hand, the normal distribution ν is quaternionic invariant, and so we can take a local orthonormal basis $\left\{\xi, \xi_{a}, \xi_{a^{*}}, \xi_{a^{* *}}\right.$, $\left.\xi_{a^{* * *}}\right\}_{a=1, \ldots, q:=\frac{p-1}{4}}$ of normal vectors to M such that

$$
\begin{equation*}
\xi_{a^{*}}:=F \xi_{a}, \quad \xi_{a^{* *}}:=G \xi_{a}, \quad \xi_{a^{* * *}}:=H \xi_{a} \tag{2.13}
\end{equation*}
$$

Now let ∇ be the Levi-Civita connection on M and let ∇^{\perp} the normal connection of $T M^{\perp}$ induced from $\bar{\nabla}$. Then Gauss and Weingarten formulae are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.14}\\
\bar{\nabla}_{X} \xi=- & A X+\nabla_{X}^{\perp} \xi=-A X+\sum_{a=1}^{q}\left\{s_{a}(X) \xi_{a}+s_{a^{*}}(X) \xi_{a^{*}}\right. \tag{2.15}\\
& \left.+s_{a^{* *}}(X) \xi_{a^{* *}}+s_{a^{* * *}}(X) \xi_{a^{* * *}}\right\} \\
\bar{\nabla}_{X} \xi_{a}= & -A_{a} X-s_{a}(X) \xi+\sum_{b=1}^{q}\left\{s_{a b}(X) \xi_{b}\right. \tag{2.15}\\
& \left.+s_{a b^{*}}(X) \xi_{b^{*}}+s_{a b^{* *}}(X) \xi_{b^{* *}}+s_{a b^{* * *}}(X) \xi_{b^{* * *}}\right\} \\
\bar{\nabla}_{X} \xi_{a^{*}}=- & A_{a^{*}} X-s_{a^{*}}(X) \xi+\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) \xi_{b}\right. \tag{2.15}\\
& \left.+s_{a^{*} b^{*}}(X) \xi_{b^{*}}+s_{a^{*} b^{* *}}(X) \xi_{b^{* *}}+s_{a^{*} b^{* * *}}(X) \xi_{b^{* * *}}\right\} \\
\bar{\nabla}_{X} \xi_{a^{* *}}=- & A_{a^{* *}} X-s_{a^{* *}}(X) \xi+\sum_{b=1}^{q}\left\{s_{a^{* *} b}(X) \xi_{b}\right. \tag{2.15}\\
& \left.+s_{a^{* *} b^{*}}(X) \xi_{b^{*}}+s_{a^{* *} b^{* *}}(X) \xi_{b^{* *}}+s_{a^{* *} b^{* * *}}(X) \xi_{b^{* * *}}\right\}
\end{align*}
$$

$$
\begin{align*}
\bar{\nabla}_{X} \xi_{a^{* * *}} & =-A_{a^{* * *}} X-s_{a^{* * *}}(X) \xi+\sum_{b=1}^{q}\left\{s_{a^{* * *}}(X) \xi_{b}\right. \tag{2.15}\\
& \left.+s_{a^{* * *} b^{*}}(X) \xi_{b^{*}}+s_{a^{* * *} b^{* *}}(X) \xi_{b^{* *}}+s_{a^{* * *} b^{* * *}}(X) \xi_{b^{* * *}}\right\}
\end{align*}
$$

for vector fields X and Y tangent to M, where $s^{\prime} s$ are the coefficients of the normal connection ∇^{\perp}. Here and in the sequel h denotes the second fundamental form and $A, A_{a}, A_{a^{*}}, A_{a^{* *}}, A_{a^{* * *}}$ denote the shape operators corresponding to the normals $\xi, \xi_{a}, \xi_{a^{*}}, \xi_{a^{* *}}, \xi_{a^{* * *}}$, respectively. They are related by

$$
\begin{align*}
h(X, Y)= & g(A X, Y) \xi+\sum_{a=1}^{q}\left\{g\left(A_{a} X, Y\right) \xi_{a}+g\left(A_{a^{*}} X, Y\right) \xi_{a^{*}}\right. \tag{2.16}\\
& \left.+g\left(A_{a^{* *}} X, Y\right) \xi_{a^{* *}}+g\left(A_{a^{* * *}} X, Y\right) \xi_{a^{* * *}}\right\}
\end{align*}
$$

By means of $(2.1)-(2.4),(2.13)$ and $(2.15)_{1-5}$, it can be easily verified that

$$
\begin{align*}
A_{a^{* * *}} X & =\phi A_{a^{* *}} X-s_{a^{* *}}(X) U \\
& =-\psi A_{a^{*}} X+s_{a^{*}}(X) V=\theta A_{a} X-s_{a}(X) W \tag{2.17}
\end{align*}
$$

$$
\begin{equation*}
s_{a^{*}}(X)=u\left(A_{a} X\right)=v\left(A_{a^{* * *}} X\right)=-w\left(A_{a^{* *}} X\right) \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
s_{a}(X)=-u\left(A_{a^{*}} X\right)=-v\left(A_{a^{* *}} X\right)=-w\left(A_{a^{* * *}} X\right) \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
s_{a^{* *}}(X)=-u\left(A_{a^{* * *}} X\right)=v\left(A_{a} X\right)=w\left(A_{a^{*}} X\right) \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
s_{a^{* * *}}(X)=u\left(A_{a^{* *}} X\right)=-v\left(A_{a^{*}} X\right)=w\left(A_{a} X\right) \tag{2.18}
\end{equation*}
$$

Moreover, since ϕ, ψ, θ are skew-symmetric and $A_{a}, A_{a^{*}}, A_{a^{* *}}, A_{a^{* * *}}$ are symmetric, $(2.17)_{1-4}$ together with (2.6) yield

$$
\begin{align*}
& g\left(\left(A_{a} \phi+\phi A_{a}\right) X, Y\right)=s_{a}(X) u(Y)-s_{a}(Y) u(X) \\
& g\left(\left(A_{a} \psi+\psi A_{a}\right) X, Y\right)=s_{a}(X) v(Y)-s_{a}(Y) v(X) \tag{2.19}\\
& g\left(\left(A_{a} \theta+\theta A_{a}\right) X, Y\right)=s_{a}(X) w(Y)-s_{a}(Y) w(X)
\end{align*}
$$

$$
\begin{align*}
& g\left(\left(A_{a^{* *}} \phi+\phi A_{a^{* *}}\right) X, Y\right)=s_{a^{* *}}(X) u(Y)-s_{a^{* *}}(Y) u(X), \\
& g\left(\left(A_{a^{* *}} \psi+\psi A_{a^{* *}}\right) X, Y\right)=s_{a^{* *}}(X) v(Y)-s_{a^{* *}}(Y) v(X), \tag{2.19}\\
& g\left(\left(A_{a^{* *}} \theta+\theta A_{a^{* *}}\right) X, Y\right)=s_{a^{* *}}(X) w(Y)-s_{a^{* *}}(Y) w(X), \\
& g\left(\left(A_{a^{* * *}} \phi+\phi A_{a^{* * *}}\right) X, Y\right)=s_{a^{* * *}}(X) u(Y)-s_{a^{* * *}}(Y) u(X), \\
& g\left(\left(A_{a^{* * *}} \psi+\psi A_{a^{* * *}}\right) X, Y\right)=s_{a^{* * *}}(X) v(Y)-s_{a^{* *}}(Y) v(X), \tag{2.19}\\
& g\left(\left(A_{a^{* * *}} \theta+\theta A_{a^{* *}}\right) X, Y\right)=s_{a^{* * *}}(X) w(Y)-s_{a^{* * *}}(Y) w(X) .
\end{align*}
$$

On the other side, since the ambient manifold is a quaternionic Kählerian manifold, differentiating the first equation of (2.4) covariantly and making use of $(2.2),(2.4)$ itself, $(2.14),(2.15)_{1}$ and (2.16), we obtain

$$
\begin{align*}
& \left(\nabla_{Y} \phi\right) X=r(Y) \psi X-q(Y) \theta X+u(X) A Y-g(A Y, X) U, \\
& \left(\nabla_{Y} u\right) X=r(Y) v(X)-q(Y) w(X)+g(\phi A Y, X) . \tag{2.20}
\end{align*}
$$

Similarly, from the second and the third equations of (2.4), we also get respectively

$$
\begin{align*}
& \left(\nabla_{Y} \psi\right) X=-r(Y) \phi X+p(Y) \theta X+v(X) A Y-g(A Y, X) V \\
& \left(\nabla_{Y} v\right) X=-r(Y) u(X)+p(Y) w(X)+g(\psi A Y, X) \tag{2.21}
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{Y} \theta\right) X=q(Y) \phi X-p(Y) \psi X+w(X) A Y-g(A Y, X) W, \\
& \left(\nabla_{Y} w\right) X=q(Y) u(X)-p(Y) v(X)+g(\theta A Y, X) . \tag{2.22}
\end{align*}
$$

Next, differentiating the first equation of (2.3) covariantly and using $(2.2),(2.3)$ itself, $(2.4),(2.14)$ and $(2.15)_{1}$, we have

$$
\begin{equation*}
\nabla_{Y} U=r(Y) V-q(Y) W+\phi A Y \tag{2.23}
\end{equation*}
$$

From the second and the third equations of (2.3), similarly we obtain respectively

$$
\begin{gather*}
\nabla_{Y} V=-r(Y) U+p(Y) W+\psi A Y \tag{2.24}\\
\nabla_{Y} W=q(Y) U-p(Y) V+\theta A Y \tag{2.25}
\end{gather*}
$$

Finally if the ambient manifold is a quaternionic space form $\bar{M}(c)$, that is, a quaternionic Kählerian manifold of constant Q-sectional curvature c, its curvature tensor \bar{R} satisfies

$$
\begin{aligned}
\bar{R}(X, Y) Z=\frac{c}{4}\{ & g(Y, Z) X-g(X, Z) Y \\
& +g(F Y, Z) F X-g(F X, Z) F Y-2 g(F X, Y) F Z \\
& +g(G Y, Z) G X-g(G X, Z) G Y-2 g(G X, Y) G Z \\
& +g(H Y, Z) H X-g(H X, Z) H Y-2 g(H X, Y) H Z\}
\end{aligned}
$$

for X, Y, Z tangent to \bar{M} (cf. [5] and [6]). Hence the equations of Gauss and Codazzi imply

$$
\begin{align*}
& R(X, Y) Z=\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y \\
& +g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z \\
& +g(\psi Y, Z) \psi X-g(\psi X, Z) \psi Y-2 g(\psi X, Y) \psi Z \\
& +g(\theta Y, Z) \theta X-g(\theta X, Z) \theta Y-2 g(\theta X, Y) \theta Z\} \\
& +g(A Y, Z) A X-g(A X, Z) A Y \tag{2.26}\\
& +\sum_{a=1}^{q}\left\{g\left(A_{a} Y, Z\right) A_{a} X-g\left(A_{a} X, Z\right) A_{a} Y\right. \\
& +g\left(A_{a^{*}} Y, Z\right) A_{a^{*}} X-g\left(A_{a^{*}} X, Z\right) A_{a^{*}} Y \\
& +g\left(A_{a^{* *}} Y, Z\right) A_{a^{* *}} X-g\left(A_{a^{* *}} X, Z\right) A_{a^{* *}} Y \\
& \left.+g\left(A_{a^{* * *}} Y, Z\right) A_{a^{* * *}} X-g\left(A_{a^{* * *}} X, Z\right) A_{a^{* * *}} Y\right\}, \\
& g\left(\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X, Z\right) \\
& =\frac{c}{4}\{g(\phi Y, Z) u(X)-g(\phi X, Z) u(Y)-2 g(\phi X, Y) u(Z) \\
& +g(\psi Y, Z) v(X)-g(\psi X, Z) v(Y)-2 g(\psi X, Y) v(Z) \\
& +g(\theta Y, Z) w(X)-g(\theta X, Z) w(Y)-2 g(\theta X, Y) w(Z)\} \\
& +\sum_{a=1}^{q}\left\{g\left(A_{a} X, Z\right) s_{a}(Y)-g\left(A_{a} Y, Z\right) s_{a}(X)\right. \tag{2.27}\\
& +g\left(A_{a^{*}} X, Z\right) s_{a^{*}}(Y)-g\left(A_{a^{*}} Y, Z\right) s_{a^{*}}(X) \\
& +g\left(A_{a^{* *}} X, Z\right) s_{a^{* *}}(Y)-g\left(A_{a^{* *}} Y, Z\right) s_{a^{* *}}(X) \\
& \left.+g\left(A_{a^{* * *}} X, Z\right) s_{a^{* * *}}(Y)-g\left(A_{a^{* * *}} Y, Z\right) s_{a^{* * *}}(X)\right\},
\end{align*}
$$

for any X, Y, Z tangent to M, where R denotes the curvature tensor of ∇ (cf. [1] and [2]).

3. Fundamental aspects concerning with the conditions (3.1)

In this section we study $Q R$-submanifolds M of maximal $Q R$-dimension in a quaternionic space form $\bar{M}(c)$ which satisfy the conditions

$$
\begin{align*}
& h(\phi X, Y)-h(X, \phi Y)=2 g(\phi X, Y) \eta, \\
& h(\psi X, Y)-h(X, \psi Y)=2 g(\psi X, Y) \eta, \tag{3.1}\\
& h(\theta X, Y)-h(X, \theta Y)=2 g(\theta X, Y) \eta, \quad \eta \in T M^{\perp}
\end{align*}
$$

for all $X, Y \in T M$.
From now on, we use the orthonormal basis (2.13) of normal vectors to M and set

$$
\eta=\rho \xi+\sum_{a=1}^{q}\left(\rho_{a} \xi_{a}+\rho_{a^{*}} \xi_{a^{*}}+\rho_{a^{* *}} \xi_{a^{* *}}+\rho_{a^{* *}} \xi_{a^{* * *}}\right\} .
$$

Then the conditions (3.1) are equivalent to

$$
\begin{align*}
& A_{a^{*}} \phi X+\phi A_{a^{*}} X=2 \rho_{a^{*}} \phi X, \quad A_{a^{*}} \psi X+\psi A_{a^{*}} X=2 \rho_{a^{*}} \psi X, \\
& A_{a^{*}} \theta X+\theta A_{a^{*}} X=2 \rho_{a^{*}} \theta X, \tag{3.2}\\
& A_{a^{* *}} \phi X+\phi A_{a^{* *}} X=2 \rho_{a^{* *}} \phi X, \quad A_{a^{* *}} \psi X+\psi A_{a^{* *}} X=2 \rho_{a^{* *}} \psi X, \\
& A_{a^{* *}} \theta X+\theta A_{a^{* *}} X=2 \rho_{a^{* *}} \theta X, \tag{3.2}
\end{align*}
$$

$$
\begin{align*}
& A_{a^{* * *}} \phi X+\phi A_{a^{* * *}} X=2 \rho_{a^{* * *}} \phi X, \\
& A_{a^{* * *}} \psi X+\psi A_{a^{* * *}} X=2 \rho_{a^{* * *}} \psi X, \tag{3.2}\\
& A_{a^{* * *}} \theta X+\theta A_{a^{* * *}} X=2 \rho_{a^{* * *}} \theta X
\end{align*}
$$

for all $a=1, \ldots, q:=(p-1) / 4$.
Lemma 3.1. Let M be an n-dimensional $Q R$-submanifold of maximal $Q R$-dimension in a quaternionic Kählerian manifold. If the conditions (3.1) hold on M, then $A=\rho I$, where I denotes the identity transformation.

Proof. Putting $X=U$ in the first equation of (3.2) $)_{1}$ and using (2.6), we have $\phi A U=0$, which together with (2.7) implies

$$
\begin{equation*}
A U=u(A U) U=g(A U, U) U \tag{3.4}
\end{equation*}
$$

Similarly, from the other equations of $(3.2)_{1}$ it follows that

$$
\begin{align*}
& A V=v(A V) V=g(A V, V) V \\
& A W=w(A W) W=g(A W, W) W \tag{3.5}
\end{align*}
$$

Next, inserting ϕX into the first equation of $(3.2)_{1}$ instead of X and making use of (2.7) and (3.4), we have

$$
-A X+u(A U) u(X) U+\phi A \phi X=2 \rho\{-X+u(X) U\}
$$

thus putting $X=V$ in the last equation and using (2.12) and (3.5), we obtain

$$
\begin{equation*}
v(A V)+w(A W)=2 \rho \tag{3.6}
\end{equation*}
$$

Similarly, inserting ψX into the second equation of (3.2) ${ }_{1}$ instead of X and making use of (2.7) and (3.5), we have

$$
-A X+v(A V) v(X) V+\psi A \psi X=2 \rho\{-X+v(X) V\}
$$

thus also putting $X=U$ in the last equation and taking account of (2.12), (3.4) and (3.5), it turns out to be

$$
\begin{equation*}
u(A U)+w(A W)=2 \rho \tag{3.7}
\end{equation*}
$$

The equation (3.6) coupled with (3.7) gives

$$
\begin{equation*}
u(A U)=v(A V) \tag{3.8}
\end{equation*}
$$

Similarly, the third equation of $(3.2)_{1}$ yields

$$
-A X+w(A W) w(X) W+\theta A \theta X=2 \rho\{-X+w(X) W\}
$$

thus putting $X=U$ in the last equation and making use of (3.8), we can see that $u(A U)=\rho$, which combined with (3.6) and (3.7) implies

$$
\begin{equation*}
u(A U)=v(A V)=w(A W)=\rho \tag{3.9}
\end{equation*}
$$

Finally, inserting ψX into the first equation of (3.2) $)_{1}$ instead of X and using (2.10), (3.4) and (3.9), we have

$$
A \theta X+v(X) A U+\phi A \psi X=2 \rho(\theta X+v(X) U)
$$

which joined with (2.10), the second equation of $(3.2)_{1},(3.4),(3.5)$ and (3.9) reduces to

$$
\theta(A-\rho I) X=0
$$

Hence we get $A=\rho I$.

Lemma 3.2. Let M be an n-dimensional $Q R$-submanifold of maximal $Q R$-dimension in a quaternionic Kählerian manifold. If the conditions (3.1) hold on M, then

$$
\begin{equation*}
s_{a}=0, \quad s_{a^{*}}=0, \quad s_{a^{* *}}=0, \quad s_{a^{* * *}}=0, \quad a=1, \ldots, q \tag{3.10}
\end{equation*}
$$

Namely, the distinguished normal vector field ξ is parallel with respect to the normal connection ∇^{\perp}. Moreover, for all $a=1, \ldots, q$

$$
\rho_{a}=\rho_{a^{*}}=\rho_{a^{* *}}=\rho_{a^{* * *}}=0, \quad a=1, \ldots, q
$$

and consequently

$$
\begin{equation*}
A_{a}=0, \quad A_{a^{*}}=0, \quad A_{a^{* *}}=0, \quad A_{a^{* * *}}=0 \tag{3.11}
\end{equation*}
$$

Proof. From (2.19) $)_{1-4}$ and $(3.2)_{2}-(3.2)_{5}$, it is clear that

$$
\begin{equation*}
2 \rho_{a} g(\phi X, Y)=s_{a}(X) u(Y)-s_{a}(Y) u(X) \tag{3.12}
\end{equation*}
$$

$$
2 \rho_{a^{*}} g(\phi X, Y)=s_{a^{*}}(X) u(Y)-s_{a^{*}}(Y) u(X),
$$

$$
2 \rho_{a^{* *}} g(\phi X, Y)=s_{a^{* *}}(X) u(Y)-s_{a^{* *}}(Y) u(X)
$$

$$
2 \rho_{a^{* * *}} g(\phi X, Y)=s_{a^{* * *}}(X) u(Y)-s_{a^{* * *}}(Y) u(X)
$$

$$
2 \rho_{a} g(\psi X, Y)=s_{a}(X) u(Y)-s_{a}(Y) u(X)
$$

$$
2 \rho_{a^{*}} g(\psi X, Y)=s_{a^{*}}(X) u(Y)-s_{a^{*}}(Y) u(X)
$$

$$
\begin{equation*}
2 \rho_{a^{* *}} g(\psi X, Y)=s_{a^{* *}}(X) u(Y)-s_{a^{* *}}(Y) u(X) \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
2 \rho_{a^{* * *}} g(\psi X, Y)=s_{a^{* * *}}(X) u(Y)-s_{a^{* * *}}(Y) u(X) \tag{3.13}
\end{equation*}
$$

for all $a=1, \ldots, q$.
Putting $Y=U$ in $(3.12)_{1}-(3.12)_{4}$, respectively, and taking account of (2.6), we have

$$
\begin{align*}
& s_{a}(X)=s_{a}(U) u(X), \quad s_{a^{*}}(X)=s_{a^{*}}(U) u(X) \\
& s_{a^{* *}}(X)=s_{a^{* *}}(U) u(X), \quad s_{a^{* * *}}(X)=s_{a^{* * *}}(U) u(X) \tag{3.14}
\end{align*}
$$

Similarly, putting $Y=V$ in $(3.13)_{1}-(3.13)_{4}$, respectively, and making use of (2.6), we get

$$
\begin{align*}
& s_{a}(X)=s_{a}(V) v(X), \quad s_{a^{*}}(X)=s_{a^{*}}(V) v(X) \\
& s_{a^{* *}}(X)=s_{a^{* *}}(V) v(X), \quad s_{a^{* * *}}(X)=s_{a^{* * *}}(V) v(X) \tag{3.15}
\end{align*}
$$

Hence the equations (3.14) and (3.15) give rise to

$$
s_{a}(U)=s_{a}(V)=0, \quad s_{a^{*}}(U)=s_{a^{*}}(V)=0
$$

$$
s_{a^{* *}}(U)=s_{a^{* *}}(V)=0, \quad s_{a^{* * *}}(U)=s_{a^{* * *}}
$$

which coupled with (3.14) imply

$$
\begin{equation*}
s_{a}=0, \quad s_{a^{*}}=0, \quad s_{a^{* *}}=0, \quad s_{a^{* * *}}=0 \tag{3.16}
\end{equation*}
$$

or equivalently, from $(2.18)_{1-4}$, we obtain

$$
\begin{array}{cccc}
A_{a} U=0, & A_{a^{*}} U=0, & A_{a^{* *}} U=0, & A_{a^{* * *}} U=0 \\
A_{a} V=0, & A_{a^{*}} V=0, & A_{a^{* *}} V=0, & A_{a^{* * *}} V=0 \tag{3.17}\\
A_{a} W=0, & A_{a^{*}} W=0, & A_{a^{* *}} W=0, & A_{a^{* * *}} W=0
\end{array}
$$

Moreover, inserting those equations back into (3.12) $1_{1}-(3.12)_{4}$ it turns out to be

$$
\rho_{a}=\rho_{a^{*}}=\rho_{a^{* *}}=\rho_{a^{* * *}}=0
$$

from which combined with $(3.2)_{2}-(3.2)_{5}$, it follows that

$$
\begin{gather*}
A_{a} \phi+\phi A_{a}=0, A_{a} \psi+\psi A_{a} X=0, A_{a} \theta+\theta A_{a}=0, \tag{3.18}\\
A_{a^{*}} \phi+\phi A_{a^{*}} X=0, A_{a^{*}} \psi+\psi A_{a^{*}}=0, A_{a^{*}} \theta+\theta A_{a^{*}}=0, \\
A_{a^{* *}} \phi+\phi A_{a^{* *}}=0, A_{a^{* *}} \psi+\psi A_{a^{* *}}=0, A_{a^{* *}} \theta+\theta A_{a^{* *}}=0, \\
A_{a^{* * *}} \phi+\phi A_{a^{* * *}}=0, A_{a^{* * *}} \psi+\psi A_{a^{* * *}}=0, A_{a^{* * *}} \theta+\theta A_{a^{* * *}}=0 \tag{3.18}
\end{gather*}
$$

for all $a=1, \ldots, q$.
Now, substituting ψX into the both side of the first equation of (3.18) ${ }_{1}$ and by means of (2.10), we have

$$
A_{a} \theta X+\phi A_{a} \psi X=0,
$$

which together with (2.10) and the second and third equations of (3.18) ${ }_{1}$ implies $\theta A_{a}=0$ and consequently we get $A_{a}=0$. Similarly, from $(3.18)_{2-4}$, we can obtain (3.11).

Theorem 1. Let M be an $n(>3)$-dimensional $Q R$-submanifold of maximal $Q R$-dimension in a quaternionic space form $\bar{M}(c)$. If the conditions (3.1) hold on M, then ρ is locally constant. Moreover, $c=0$.

Proof. We first notice that, under our assumptions, Lemma 3.2 yields that the Codazzi equation (2.27) reduces to

$$
\begin{align*}
& g\left(\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X, Z\right) \\
& =\frac{c}{4}\{g(\phi Y, Z) u(X)-g(\phi X, Z) u(Y)-2 g(\phi X, Y) u(Z) \tag{3.19}\\
& \quad+g(\psi Y, Z) v(X)-g(\psi X, Z) v(Y)-2 g(\psi X, Y) v(Z) \\
& \quad+g(\theta Y, Z) w(X)-g(\theta X, Z) w(Y)-2 g(\theta X, Y) w(Z)\} .
\end{align*}
$$

On the other hand, owing to Lemma 3.1, $A=\rho I$, which joined with (3.19) of $Z=U$ gives forth

$$
\begin{align*}
& \frac{c}{2}\{v(X) w(Y)-w(X) v(Y)-g(\phi X, Y)\} \tag{3.20}\\
& =(X \rho) u(Y)-(Y \rho) u(X)
\end{align*}
$$

Putting $Y=U$ in (3.20) and making use of (2.6) and (2.12), we obtain

$$
\begin{equation*}
X \rho=(U \rho) u(X) \tag{3.21}
\end{equation*}
$$

According to similar method as the above, the equation (3.19) with $Z=V$ yields

$$
X \rho=(V \rho) v(X)
$$

which together with (3.21) implies $X \rho=0$, that is, ρ is locally constant. Therefore, (3.20) reduces to

$$
\begin{equation*}
c\{v(X) w(Y)-w(X) v(Y)-g(\phi X, Y)\}=0 \tag{3.22}
\end{equation*}
$$

Inserting ϕX into (3.22) instead of X and taking account of (2.7) and (2.9), we have

$$
c\{g(X, Y)-u(X) u(Y)-v(X) v(Y)-w(X) w(Y)\}=0
$$

and consequently we get $c=0$.

4. Main result

In this section we consider $Q R$-submanifolds of maximal $Q R$-dimension in a quaternionic space form $\bar{M}(c)$ which satisfies the conditions (3.1). But, as already shown in Theorem 1, it is enough to consider the case of $c=0$. Thus, from now on, we let M be an $n(>3)$-dimensional $Q R$ submanifold of maximal $Q R$-dimension satisfying conditions (3.1) in a quaternionic number space $Q^{(n+p) / 4}$ identified with Euclidean $(n+p)$ space R^{n+p}.

On the other hand, in this case we can easily see from Lemma 3.2 that the first normal space of M is contained in $\operatorname{Span}\{\xi\}$ which is invariant under parallel translation with respect to the normal connection ∇^{\perp} from our assumption. Thus we may apply Erbacher's reduction theorem ([3, p.339]) to M and can verify that there exists a totally geodesic Euclidean $(n+1)$-space R^{n+1} such that $M \subset R^{n+1}$. We notice that $n+1=4(m+1)$ for some integer m. Moreover, since the tangent space $T_{x} R^{n+1}$ of the totally geodesic submanifold R^{n+1} at $x \in M$ is $T_{x} M \oplus$ $\operatorname{Span}\{\xi\}, R^{n+1}$ is an invariant submanifold of $R^{(n+p) / 4}$ with respect to $\{F, G, H\}$ (for definition, see [1]) because of (2.3) and (2.4). Hence M
can be regarded as a real hypersurface of R^{n+1} which is a totally geodesic invariant submanifold of $R^{(n+p) / 4}$.

Tentatively we denote by i_{1} the immersion of M into R^{n+1} and i_{2} the totally geodesic immersion of R^{n+1} onto $R^{(n+p) / 4}$. Then, from the Gauss equation (2.14), it follows that

$$
\nabla_{i_{1} X}^{\prime} i_{1} Y=i_{1} \nabla_{X} Y+h^{\prime}(X, Y)=i_{1} \nabla_{X} Y+g\left(A^{\prime} X, Y\right) \xi^{\prime}
$$

where it is denoted by h^{\prime} the second fundamental form of M in R^{n+1}, ξ^{\prime} a unit normal vector field to M in R^{n+1} and A^{\prime} the shape operator corresponding to ξ^{\prime}. Since $i=i_{2} \circ i_{1}$ and R^{n+1} is totally geodesic in $R^{(n+p) / 4}$, we have

$$
\begin{align*}
\bar{\nabla}_{i_{2} \circ i_{1} X} i_{2} \circ i_{1} Y & =i_{2} \nabla_{i_{1} X}^{\prime} i_{1} Y+\bar{h}\left(i_{1} X, i_{1} Y\right) \tag{4.1}\\
& =i_{2}\left(i_{1} \nabla_{X} Y+g\left(A^{\prime} X, Y\right) \xi^{\prime}\right)
\end{align*}
$$

where \bar{h} denotes the second fundamental form of R^{n+1}.
Comparing (4.1) with (2.14), we easily see that

$$
\begin{equation*}
\xi=i_{2} \xi^{\prime}, \quad A=A^{\prime} \tag{4.2}
\end{equation*}
$$

Since R^{n+1} is an invariant submanifold of $R^{(n+p) / 4}$, for any $X^{\prime} \in T R^{n+1}$,

$$
F i_{2} X^{\prime}=i_{2} F^{\prime} X^{\prime}, \quad G i_{2} X^{\prime}=i_{2} G^{\prime} X^{\prime}, \quad H i_{2} X^{\prime}=i_{2} H^{\prime} X^{\prime}
$$

is valid, where $\left\{F^{\prime}, G^{\prime}, H^{\prime}\right\}$ is the induced quaterninic Kähler structure of R^{n+1}. Thus it follows from (2.4) that

$$
\begin{aligned}
F i X & =F i_{2} \circ i_{1} X=i_{2} F^{\prime} i_{1} X=i_{2}\left(i_{1} \phi^{\prime} X+u^{\prime}(X) \xi^{\prime}\right) \\
& =i \phi^{\prime} X+u^{\prime}(X) i_{2} \xi^{\prime}=i \phi^{\prime} X+u^{\prime}(X) \xi
\end{aligned}
$$

Comparing this equation with (2.4), we have $\phi=\phi^{\prime}, u^{\prime}=u$. Similarly, we also get

$$
\phi=\phi^{\prime}, u^{\prime}=u \quad \psi=\psi^{\prime}, v^{\prime}=v \quad \theta=\theta^{\prime}, w^{\prime}=w
$$

Hence M is a real hypersurface of R^{n+1} which satisfies the conditions (3.1) and, moreover it is seen that $A^{\prime}=\rho I$. Thus we have

Theorem 2. Let M be a complete $n(>3)$-dimensional $Q R$-submanifold of maximal $Q R$-dimension in a quaternionic space form $\bar{M}(c)$. If the conditions (3.1) hold on M, then M is congruent to

$$
R^{n} \quad \text { or } \quad S^{n} .
$$

References

[1] A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986.
[2] B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973.
[3] J. Erbacher, Reduction of the codimension of an isometric immersion, J. Diff. Geom. 5 (1971), 333-340.
[4] S. Funabashi, J. S. Pak and Y. J. Shin, On the normality of an almost contact 3-structure on QR-submanifolds, Czecho. Math. J. 53 (2003), 571-589.
[5] S. Ishihara, Quaternion Kaehlerian manifolds, J. Diff. Geom. 9 (1974), 483-500.
[6] S. Ishihara and M. Konishi, Differential geometry of fibred spaces, Publication of the study group of geometry, Vol. 8, Tokyo, 1973.
[7] H. S. Kim and J. S. Pak, QR-submanifolds of maximal $Q R$-dimension in quaternionic projective space, J. Korean Math. Soc. 42 (2005), 655-672.
[8] Y. Y. Kuo, On almost contact 3-structure, Tôhoku Math. J. 22 (1970), 325-332.
[9] J.-H. Kwon and J. S. Pak, Scalar curvature of $Q R$-submanifolds immersed in a quaternionic projective space, Saitama Math. J. 17 (1999), 47-57.
[10] J.-H. Kwon and J. S. Pak, $Q R$-submanifolds of $(p-1) Q R$-dimension in a quaternionic projective space $Q P^{(n+p) / 4}$, Acta Math. Hungarica 86 (2000), 89-116.
[11] H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom. 4 (1970), 349-357.
[12] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, T. E. Cecil and S. S. Chern, eds., Cambridge University Press, 1998.
[13] J. S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kōdai Math. Sem. Rep. 29 (1977), 22-61.

Hyang Sook Kim
Department of Applied Mathematics, Institute of Basic Science,
Inje University,
Kimhae 621-749, Korea.
E-mail: mathkim@inje.ac.kr

Jin Suk Pak
An Emeritus Professor, Kyungpook National University,
Daegu 702-701, Korea.
E-mail: jspak@knu.ac.kr

[^0]: Received March 5, 2013. Accepted April 24, 2013.
 2010 Mathematics Subject Classification. 53C40, 53C25.
 Key words and phrases. quaternionic space form, quaternionic Kähler manifold, constant Q-sectional curvature, $Q R$-submanifold of maximal $Q R$-dimension, almost contact 3-structure.

 This work was supported by the 2012 Inje University research grant.

