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CERTAIN CLASS OF QR-SUBMANIFOLDS

OF MAXIMAL QR-DIMENSION

IN QUATERNIONIC SPACE FORM

Hyang Sook Kim and Jin Suk Pak

Abstract. In this paper we determine certain class of n-dimensional
QR-submanifolds of maximal QR-dimension isometrically immersed
in a quaternionic space form, that is, a quaternionic Kähler man-
ifold of constant Q-sectional curvature under the conditions (3.1)
concerning with the second fundamental form and the induced al-
most contact 3-structure.

1. Introduction

Let M be a connected real n-dimensional submanifold of real codi-
mension p of a quaternionic Kähler manifoldM with quaternionic Kähler
structure {F,G,H}. If there exists an r-dimensional subbundle ν of the
normal bundle TM⊥ such that

Fνx ⊂ νx, Gνx ⊂ νx, Hνx ⊂ νx,

Fν⊥x ⊂ TxM, Gν⊥x ⊂ TxM, Hν⊥x ⊂ TxM

at each point x in M , then M is called a QR-submanifold of r QR-
dimension, where ν⊥ denotes the complementary orthogonal distribu-
tion to ν in TM⊥ (cf. [1], [4], [7], [9] and [10] etc.). Real hypersurfaces,
which are typical examples of QR-submanifold with r = 0, have been
investigated in many papers (cf. [11], [12] and [13] etc.) in connection
with the shape operator and the induced almost contact 3-structure (for
definition, see [8]).
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On the other hand, for aQR-submanifoldM of maximalQR-dimension,
(that is, (p−1)QR-dimension) we can take a distinguished normal vector
field ξ to M , where p is the codimension of M so that ν⊥ = Span{ξ}. Re-
cently many authors (cf. [4], [7], [9] and [10]) studied QR-submanifolds
M of maximal QR-dimension in a quaternionic space form under the
following additional condition :

The distinguished normal vector field ξ is parallel with respect to the
normal connection induced on the normal bundle of M .

In this paper we shall determine a QR-submanifold M of maxi-
mal QR-dimension isometrically immersed in a quaternionic space form
which satisfy the assumptions

h(φX, Y )− h(X,φY ) = 2g(φX, Y )η,

h(ψX, Y )− h(X,ψY ) = 2g(ψX, Y )η,

h(θX, Y )− h(X, θY ) = 2g(θX, Y )η

for a normal vector field η to M without the additional condition above,
where it is denoted by h the second fundamental form, {φ, ψ, θ} the
induced almost contact 3-structure on M (see §2) and g the Riemannian
metric tensor of M induced from that of M .

All manifolds, submanifolds and geometric objects will be assumed
to be connected, differentiable and of class C∞, and all maps also be of
class C∞ if not stated otherwise.

2. Preliminaries

Let M be a real (n+p)-dimensional quaternionic Kählerian manifold.
Then, by definition, there is a 3-dimensional vector bundle V consisting
of tensor fields of type (1,1) over M satisfying the following conditions
(a), (b) and (c) :

(a) In any coordinate neighborhood U , there is a local basis {F , G,
H} of V such that

F 2 = −I, G2 = −I, H2 = −I,
FG = −GF = H, GH = −HG = F, HF = −FH = G.

(2.1)

(b) There is a Riemannian metric ḡ which is Hermitian with respect
to all of F , G and H.
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(c) For the Riemannian connection ∇ with respect to ḡ ∇F
∇G
∇H

 =

 0 r −q
−r 0 p
q −p 0

 F
G
H

(2.2)

where p, q and r are local 1-forms defined in U . Such a local basis
{F,G,H} is called a canonical local basis of the bundle V in U (cf. [5]
and [6]).

For canonical local bases {F,G,H} and {′F, ′G, ′H} of V in coordi-
nate neighborhoods U and ′U respectively, it follows that in U ∩ ′U ′F

′G
′H

 = (sxy)

 F
G
H

 (x, y = 1, 2, 3)

where sxy are local differentiable functions with (sxy) ∈ SO(3) as a
consequence of (2.1). It is well known that every quaternionic Kählerian
manifold is orientable (cf. [5] and [6]).

Now let M be an n-dimensional QR-submanifold of maximal QR-
dimension, namely, (p− 1) QR-dimension isometrically immersed in M .
Then by definition there is a unit normal vector field ξ such that ν⊥x =
Span{ξ} at each point x in M . We set

U = −Fξ, V = −Gξ, W = −Hξ.(2.3)

Denoting by Dx the maximal quaternionic invariant subspace

TxM ∩ FTxM ∩GTxM ∩HTxM

of TxM , we have D⊥x ⊃ Span{U, V,W}, where D⊥x is the complementary
orthogonal subspace to Dx in TxM . But, using (2.1) and (2.3), we can
prove that D⊥x = Span{U, V,W} (cf. [1] and [10]). Thus we have

TxM = Dx ⊕ Span{U, V,W}, ∀x ∈M,

which together with (2.1) and (2.3) implies

FTxM, GTxM, HTxM ⊂ TxM ⊕ Span{ξ}.

Therefore, for any tangent vector field X and for a local orthonormal
basis {ξα}α=1,...,p (ξ1 := ξ) of normal vectors to M , we have the following
decompsition in tangential and normal components :

FX = φX + u(X)ξ, GX = ψX + v(X)ξ,

HX = θX + w(X)ξ,
(2.4)
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Fξα =

p∑
β=2

P1αβξβ, Gξα =

p∑
β=2

P2αβξβ, Hξα =

p∑
β=2

P3αβξβ(2.5)

where α = 2, . . . , p. Then it is easily seen that φ, ψ and θ are skew-
symmetric endomorphisms acting on TxM . Moreover, from (2.3), (2.4),
(2.5) and the Hermitian property of {F,G,H}, it follows that

g(U,X) = u(X), g(V,X) = v(X) g(W,X) = w(X),

u(U) = 1, v(V ) = 1, w(W ) = 1,

φU = 0, ψV = 0, θW = 0.

(2.6)

Next, applying F to the first equation of (2.4) and making use of
(2.3), (2.4) and (2.6), we have

φ2X = −X + u(X)U, u(φX) = 0.

Similarly taking account of the second and the third equations of (2.4),
we obtain consequently

φ2X = −X + u(X)U, ψ2X = −X + v(X)V,

θ2X = −X + w(X)W,
(2.7)

u(φX) =g(φX,U) = 0, v(ψX) = g(ψX, V ) = 0,

w(θX) = g(θX,W ) = 0.
(2.8)

Applying G and H respectively to the first equation of (2.4) and using
(2.1), (2.3) and (2.4), we get

θX + w(X)ξ = −ψ(φX)− v(φX)ξ + u(X)V,

ψX + v(X)ξ = θ(φX) + w(φX)ξ − u(X)W,

respectively. Thus we can see that

ψ(φX) = −θX + u(X)V, v(φX) = −w(X),

θ(φX) = ψX + u(X)W, w(φX) = v(X).
(2.9)

Therefore, according to similar method as the above, the second and the
third equations of (2.4) also yield respectively

φ(ψX) = θX + v(X)U, u(ψX) = w(X),

θ(ψX) = −φX + v(X)W, w(ψX) = −u(X),
(2.10)

φ(θX) = −ψX + w(X)U, u(θX) = −v(X),

ψ(θX) = φX + w(X)V, v(θX) = u(X).
(2.11)
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Furthermore, from (2.8) joined with the skew-symmetry of φ, ψ and θ,
it follows that

ψU = −W, v(U) = 0, θU = V, w(U) = 0,

φV = W, u(V ) = 0, θV = −U, w(V ) = 0,

φW = −V, u(W ) = 0, ψW = U, v(W ) = 0,

(2.12)

where we have used (2.9), (2.10) and (2.11).
The equations (2.6)-(2.12) tell us that M admits the so-called al-

most contact 3-structure (for definition, see [8]) and consequently the
dimension of M satisfies the equality n = 4m+ 3 for some integer m.

On the other hand, the normal distribution ν is quaternionic in-
variant, and so we can take a local orthonormal basis {ξ, ξa, ξa∗ , ξa∗∗ ,
ξa∗∗∗}a=1,...,q:= p−1

4
of normal vectors to M such that

ξa∗ := Fξa, ξa∗∗ := Gξa, ξa∗∗∗ := Hξa.(2.13)

Now let ∇ be the Levi-Civita connection on M and let ∇⊥ the nor-
mal connection of TM⊥ induced from ∇. Then Gauss and Weingarten
formulae are given by

∇XY = ∇XY + h(X,Y ),(2.14)

(2.15)1
∇Xξ = −AX +∇⊥Xξ = −AX +

q∑
a=1

{sa(X)ξa + sa∗(X)ξa∗

+ sa∗∗(X)ξa∗∗ + sa∗∗∗(X)ξa∗∗∗},

(2.15)2
∇Xξa = −AaX − sa(X)ξ +

q∑
b=1

{sab(X)ξb

+ sab∗(X)ξb∗ + sab∗∗(X)ξb∗∗ + sab∗∗∗(X)ξb∗∗∗},

(2.15)3
∇Xξa∗ = −Aa∗X − sa∗(X)ξ +

q∑
b=1

{sa∗b(X)ξb

+ sa∗b∗(X)ξb∗ + sa∗b∗∗(X)ξb∗∗ + sa∗b∗∗∗(X)ξb∗∗∗},

(2.15)4
∇Xξa∗∗ = −Aa∗∗X − sa∗∗(X)ξ +

q∑
b=1

{sa∗∗b(X)ξb

+ sa∗∗b∗(X)ξb∗ + sa∗∗b∗∗(X)ξb∗∗ + sa∗∗b∗∗∗(X)ξb∗∗∗},
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(2.15)5
∇Xξa∗∗∗ = −Aa∗∗∗X − sa∗∗∗(X)ξ +

q∑
b=1

{sa∗∗∗b(X)ξb

+ sa∗∗∗b∗(X)ξb∗ + sa∗∗∗b∗∗(X)ξb∗∗ + sa∗∗∗b∗∗∗(X)ξb∗∗∗}

for vector fields X and Y tangent to M , where s′s are the coefficients
of the normal connection ∇⊥. Here and in the sequel h denotes the
second fundamental form and A,Aa, Aa∗ , Aa∗∗ , Aa∗∗∗ denote the shape
operators corresponding to the normals ξ, ξa, ξa∗ , ξa∗∗ , ξa∗∗∗ , respectively.
They are related by

(2.16)
h(X,Y ) = g(AX,Y )ξ +

q∑
a=1

{g(AaX,Y )ξa + g(Aa∗X,Y )ξa∗

+ g(Aa∗∗X,Y )ξa∗∗ + g(Aa∗∗∗X,Y )ξa∗∗∗}.
By means of (2.1)-(2.4), (2.13) and (2.15)1−5, it can be easily verified
that

(2.17)1
AaX = −φAa∗X + sa∗(X)U

= −ψAa∗∗X + sa∗∗(X)V = −θAa∗∗∗X + sa∗∗∗(X)W,

(2.17)2
Aa∗X = φAaX − sa(X)U

= ψAa∗∗∗X − sa∗∗∗(X)V = −θAa∗∗X + sa∗∗(X)W,

(2.17)3
Aa∗∗X = −φAa∗∗∗X + sa∗∗∗(X)U

= ψAaX − sa(X)V = θAa∗X − sa∗(X)W,

(2.17)4
Aa∗∗∗X = φAa∗∗X − sa∗∗(X)U

= −ψAa∗X + sa∗(X)V = θAaX − sa(X)W,

(2.18)1 sa(X) = −u(Aa∗X) = −v(Aa∗∗X) = −w(Aa∗∗∗X),

(2.18)2 sa∗(X) = u(AaX) = v(Aa∗∗∗X) = −w(Aa∗∗X),

(2.18)3 sa∗∗(X) = −u(Aa∗∗∗X) = v(AaX) = w(Aa∗X),

(2.18)4 sa∗∗∗(X) = u(Aa∗∗X) = −v(Aa∗X) = w(AaX).

Moreover, since φ, ψ, θ are skew-symmetric and Aa, Aa∗ , Aa∗∗ , Aa∗∗∗ are
symmetric, (2.17)1−4 together with (2.6) yield

(2.19)1

g((Aaφ+ φAa)X,Y ) = sa(X)u(Y )− sa(Y )u(X),

g((Aaψ + ψAa)X,Y ) = sa(X)v(Y )− sa(Y )v(X),

g((Aaθ + θAa)X,Y ) = sa(X)w(Y )− sa(Y )w(X),
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(2.19)2

g((Aa∗φ+ φAa∗)X,Y ) = sa∗(X)u(Y )− sa∗(Y )u(X),

g((Aa∗ψ + ψAa∗)X,Y ) = sa∗(X)v(Y )− sa∗(Y )v(X),

g((Aa∗θ + θAa∗)X,Y ) = sa∗(X)w(Y )− sa∗(Y )w(X),

(2.19)3

g((Aa∗∗φ+ φAa∗∗)X,Y ) = sa∗∗(X)u(Y )− sa∗∗(Y )u(X),

g((Aa∗∗ψ + ψAa∗∗)X,Y ) = sa∗∗(X)v(Y )− sa∗∗(Y )v(X),

g((Aa∗∗θ + θAa∗∗)X,Y ) = sa∗∗(X)w(Y )− sa∗∗(Y )w(X),

(2.19)4

g((Aa∗∗∗φ+ φAa∗∗∗)X,Y ) = sa∗∗∗(X)u(Y )− sa∗∗∗(Y )u(X),

g((Aa∗∗∗ψ + ψAa∗∗∗)X,Y ) = sa∗∗∗(X)v(Y )− sa∗∗∗(Y )v(X),

g((Aa∗∗∗θ + θAa∗∗)X,Y ) = sa∗∗∗(X)w(Y )− sa∗∗∗(Y )w(X).

On the other side, since the ambient manifold is a quaternionic Kählerian
manifold, differentiating the first equation of (2.4) covariantly and mak-
ing use of (2.2), (2.4) itself, (2.14), (2.15)1 and (2.16), we obtain

(2.20)
(∇Y φ)X = r(Y )ψX − q(Y )θX + u(X)AY − g(AY,X)U,

(∇Y u)X = r(Y )v(X)− q(Y )w(X) + g(φAY,X).

Similarly, from the second and the third equations of (2.4), we also get
respectively

(2.21)
(∇Y ψ)X = −r(Y )φX + p(Y )θX + v(X)AY − g(AY,X)V,

(∇Y v)X = −r(Y )u(X) + p(Y )w(X) + g(ψAY,X),

(2.22)
(∇Y θ)X = q(Y )φX − p(Y )ψX + w(X)AY − g(AY,X)W,

(∇Y w)X = q(Y )u(X)− p(Y )v(X) + g(θAY,X).

Next, differentiating the first equation of (2.3) covariantly and using
(2.2), (2.3) itself, (2.4), (2.14) and (2.15)1, we have

(2.23) ∇Y U = r(Y )V − q(Y )W + φAY.

From the second and the third equations of (2.3), similarly we obtain
respectively

(2.24) ∇Y V = −r(Y )U + p(Y )W + ψAY,

(2.25) ∇YW = q(Y )U − p(Y )V + θAY.



154 Hyang Sook Kim and Jin Suk Pak

Finally if the ambient manifold is a quaternionic space form M(c),
that is, a quaternionic Kählerian manifold of constant Q-sectional cur-
vature c, its curvature tensor R satisfies

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y

+ g(FY,Z)FX − g(FX,Z)FY − 2g(FX, Y )FZ

+ g(GY,Z)GX − g(GX,Z)GY − 2g(GX,Y )GZ

+ g(HY,Z)HX − g(HX,Z)HY − 2g(HX,Y )HZ}

for X,Y, Z tangent to M (cf. [5] and [6]). Hence the equations of Gauss
and Codazzi imply

(2.26)

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+ g(ψY,Z)ψX − g(ψX,Z)ψY − 2g(ψX, Y )ψZ

+ g(θY, Z)θX − g(θX,Z)θY − 2g(θX, Y )θZ}
+ g(AY,Z)AX − g(AX,Z)AY

+

q∑
a=1

{g(AaY, Z)AaX − g(AaX,Z)AaY

+ g(Aa∗Y, Z)Aa∗X − g(Aa∗X,Z)Aa∗Y

+ g(Aa∗∗Y, Z)Aa∗∗X − g(Aa∗∗X,Z)Aa∗∗Y

+ g(Aa∗∗∗Y, Z)Aa∗∗∗X − g(Aa∗∗∗X,Z)Aa∗∗∗Y },

(2.27)

g((∇XA)Y − (∇YA)X,Z)

=
c

4
{g(φY,Z)u(X)− g(φX,Z)u(Y )− 2g(φX, Y )u(Z)

+ g(ψY,Z)v(X)− g(ψX,Z)v(Y )− 2g(ψX, Y )v(Z)

+ g(θY, Z)w(X)− g(θX,Z)w(Y )− 2g(θX, Y )w(Z)}

+

q∑
a=1

{g(AaX,Z)sa(Y )− g(AaY, Z)sa(X)

+ g(Aa∗X,Z)sa∗(Y )− g(Aa∗Y,Z)sa∗(X)

+ g(Aa∗∗X,Z)sa∗∗(Y )− g(Aa∗∗Y,Z)sa∗∗(X)

+ g(Aa∗∗∗X,Z)sa∗∗∗(Y )− g(Aa∗∗∗Y,Z)sa∗∗∗(X)},

for any X,Y, Z tangent to M , where R denotes the curvature tensor of
∇ (cf. [1] and [2]).
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3. Fundamental aspects concerning with the conditions (3.1)

In this section we studyQR-submanifoldsM of maximalQR-dimension
in a quaternionic space form M(c) which satisfy the conditions

h(φX, Y )− h(X,φY ) = 2g(φX, Y )η,

h(ψX, Y )− h(X,ψY ) = 2g(ψX, Y )η,

h(θX, Y )− h(X, θY ) = 2g(θX, Y )η, η ∈ TM⊥
(3.1)

for all X,Y ∈ TM .

From now on, we use the orthonormal basis (2.13) of normal vectors
to M and set

η = ρξ +

q∑
a=1

(ρaξa + ρa∗ξa∗ + ρa∗∗ξa∗∗ + ρa∗∗∗ξa∗∗∗}.

Then the conditions (3.1) are equivalent to

(3.2)1
AφX + φAX = 2ρφX, AψX + ψAX = 2ρψX,

AθX + θAX = 2ρθX,

(3.2)2
AaφX + φAaX = 2ρaφX, AaψX + ψAaX = 2ρaψX,

AaθX + θAaX = 2ρaθX,

(3.2)3
Aa∗φX + φAa∗X = 2ρa∗φX, Aa∗ψX + ψAa∗X = 2ρa∗ψX,

Aa∗θX + θAa∗X = 2ρa∗θX,

(3.2)4
Aa∗∗φX + φAa∗∗X = 2ρa∗∗φX, Aa∗∗ψX + ψAa∗∗X = 2ρa∗∗ψX,

Aa∗∗θX + θAa∗∗X = 2ρa∗∗θX,

(3.2)5

Aa∗∗∗φX + φAa∗∗∗X = 2ρa∗∗∗φX,

Aa∗∗∗ψX + ψAa∗∗∗X = 2ρa∗∗∗ψX,

Aa∗∗∗θX + θAa∗∗∗X = 2ρa∗∗∗θX

for all a = 1, . . . , q := (p− 1)/4.

Lemma 3.1. Let M be an n-dimensional QR-submanifold of max-
imal QR-dimension in a quaternionic Kählerian manifold. If the con-
ditions (3.1) hold on M , then A = ρI, where I denotes the identity
transformation.
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Proof. Putting X = U in the first equation of (3.2)1 and using (2.6),
we have φAU = 0, which together with (2.7) implies

(3.4) AU = u(AU)U = g(AU,U)U.

Similarly, from the other equations of (3.2)1 it follows that

(3.5)
AV = v(AV )V = g(AV, V )V,

AW = w(AW )W = g(AW,W )W.

Next, inserting φX into the first equation of (3.2)1 instead of X and
making use of (2.7) and (3.4), we have

−AX + u(AU)u(X)U + φAφX = 2ρ{−X + u(X)U},
thus putting X = V in the last equation and using (2.12) and (3.5), we
obtain

(3.6) v(AV ) + w(AW ) = 2ρ.

Similarly, inserting ψX into the second equation of (3.2)1 instead of X
and making use of (2.7) and (3.5), we have

−AX + v(AV )v(X)V + ψAψX = 2ρ{−X + v(X)V },
thus also putting X = U in the last equation and taking account of
(2.12), (3.4) and (3.5), it turns out to be

(3.7) u(AU) + w(AW ) = 2ρ.

The equation (3.6) coupled with (3.7) gives

(3.8) u(AU) = v(AV ).

Similarly, the third equation of (3.2)1 yields

−AX + w(AW )w(X)W + θAθX = 2ρ{−X + w(X)W},
thus putting X = U in the last equation and making use of (3.8), we
can see that u(AU) = ρ, which combined with (3.6) and (3.7) implies

(3.9) u(AU) = v(AV ) = w(AW ) = ρ.

Finally, inserting ψX into the first equation of (3.2)1 instead of X
and using (2.10), (3.4) and (3.9), we have

AθX + v(X)AU + φAψX = 2ρ(θX + v(X)U),

which joined with (2.10), the second equation of (3.2)1, (3.4), (3.5) and
(3.9) reduces to

θ(A− ρI)X = 0.

Hence we get A = ρI.



Certain class of QR-submanifolds of maximal QR-dimension 157

Lemma 3.2. Let M be an n-dimensional QR-submanifold of maxi-
mal QR-dimension in a quaternionic Kählerian manifold. If the condi-
tions (3.1) hold on M , then

(3.10) sa = 0, sa∗ = 0, sa∗∗ = 0, sa∗∗∗ = 0, a = 1, . . . , q.

Namely, the distinguished normal vector field ξ is parallel with respect
to the normal connection ∇⊥. Moreover, for all a = 1, . . . , q

ρa = ρa∗ = ρa∗∗ = ρa∗∗∗ = 0, a = 1, . . . , q,

and consequently

(3.11) Aa = 0, Aa∗ = 0, Aa∗∗ = 0, Aa∗∗∗ = 0.

Proof. From (2.19)1−4 and (3.2)2 − (3.2)5, it is clear that

(3.12)1 2ρag(φX, Y ) = sa(X)u(Y )− sa(Y )u(X),

(3.12)2 2ρa∗g(φX, Y ) = sa∗(X)u(Y )− sa∗(Y )u(X),

(3.12)3 2ρa∗∗g(φX, Y ) = sa∗∗(X)u(Y )− sa∗∗(Y )u(X),

(3.12)4 2ρa∗∗∗g(φX, Y ) = sa∗∗∗(X)u(Y )− sa∗∗∗(Y )u(X),

(3.13)1 2ρag(ψX, Y ) = sa(X)u(Y )− sa(Y )u(X),

(3.13)2 2ρa∗g(ψX, Y ) = sa∗(X)u(Y )− sa∗(Y )u(X),

(3.13)3 2ρa∗∗g(ψX, Y ) = sa∗∗(X)u(Y )− sa∗∗(Y )u(X),

(3.13)4 2ρa∗∗∗g(ψX, Y ) = sa∗∗∗(X)u(Y )− sa∗∗∗(Y )u(X)

for all a = 1, . . . , q.
Putting Y = U in (3.12)1 − (3.12)4, respectively, and taking account

of (2.6), we have

(3.14)
sa(X) = sa(U)u(X), sa∗(X) = sa∗(U)u(X),

sa∗∗(X) = sa∗∗(U)u(X), sa∗∗∗(X) = sa∗∗∗(U)u(X).

Similarly, putting Y = V in (3.13)1-(3.13)4, respectively, and making
use of (2.6), we get

(3.15)
sa(X) = sa(V )v(X), sa∗(X) = sa∗(V )v(X),

sa∗∗(X) = sa∗∗(V )v(X), sa∗∗∗(X) = sa∗∗∗(V )v(X).

Hence the equations (3.14) and (3.15) give rise to

sa(U) = sa(V ) = 0, sa∗(U) = sa∗(V ) = 0,
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sa∗∗(U) = sa∗∗(V ) = 0, sa∗∗∗(U) = sa∗∗∗

which coupled with (3.14) imply

(3.16) sa = 0, sa∗ = 0, sa∗∗ = 0, sa∗∗∗ = 0,

or equivalently, from (2.18)1−4, we obtain

(3.17)1 AaU = 0, Aa∗U = 0, Aa∗∗U = 0, Aa∗∗∗U = 0,

(3.17)2 AaV = 0, Aa∗V = 0, Aa∗∗V = 0, Aa∗∗∗V = 0,

(3.17)3 AaW = 0, Aa∗W = 0, Aa∗∗W = 0, Aa∗∗∗W = 0.

Moreover, inserting those equations back into (3.12)1-(3.12)4 it turns
out to be

ρa = ρa∗ = ρa∗∗ = ρa∗∗∗ = 0,

from which combined with (3.2)2-(3.2)5, it follows that

(3.18)1 Aaφ+ φAa = 0, Aaψ + ψAaX = 0, Aaθ + θAa = 0,

(3.18)2 Aa∗φ+ φAa∗X = 0, Aa∗ψ + ψAa∗ = 0, Aa∗θ + θAa∗ = 0,

(3.18)3 Aa∗∗φ+ φAa∗∗ = 0, Aa∗∗ψ + ψAa∗∗ = 0, Aa∗∗θ + θAa∗∗ = 0,

(3.18)4 Aa∗∗∗φ+ φAa∗∗∗ = 0, Aa∗∗∗ψ + ψAa∗∗∗ = 0, Aa∗∗∗θ + θAa∗∗∗ = 0

for all a = 1, . . . , q.
Now, substituting ψX into the both side of the first equation of

(3.18)1 and by means of (2.10), we have

AaθX + φAaψX = 0,

which together with (2.10) and the second and third equations of (3.18)1
implies θAa = 0 and consequently we get Aa = 0. Similarly, from
(3.18)2−4, we can obtain (3.11).

Theorem 1. Let M be an n(> 3)-dimensional QR-submanifold
of maximal QR-dimension in a quaternionic space form M(c). If the
conditions (3.1) hold on M , then ρ is locally constant. Moreover, c = 0.

Proof. We first notice that, under our assumptions, Lemma 3.2 yields
that the Codazzi equation (2.27) reduces to

(3.19)

g((∇XA)Y − (∇YA)X,Z)

=
c

4
{g(φY,Z)u(X)− g(φX,Z)u(Y )− 2g(φX, Y )u(Z)

+ g(ψY,Z)v(X)− g(ψX,Z)v(Y )− 2g(ψX, Y )v(Z)

+ g(θY, Z)w(X)− g(θX,Z)w(Y )− 2g(θX, Y )w(Z)}.
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On the other hand, owing to Lemma 3.1, A = ρI, which joined with
(3.19) of Z = U gives forth

(3.20)

c

2
{v(X)w(Y )− w(X)v(Y )− g(φX, Y )}

= (Xρ)u(Y )− (Y ρ)u(X).

Putting Y = U in (3.20) and making use of (2.6) and (2.12), we obtain

(3.21) Xρ = (Uρ)u(X).

According to similar method as the above, the equation (3.19) with
Z = V yields

Xρ = (V ρ)v(X),

which together with (3.21) implies Xρ = 0, that is, ρ is locally constant.
Therefore, (3.20) reduces to

(3.22) c{v(X)w(Y )− w(X)v(Y )− g(φX, Y )} = 0.

Inserting φX into (3.22) instead of X and taking account of (2.7) and
(2.9), we have

c{g(X,Y )− u(X)u(Y )− v(X)v(Y )− w(X)w(Y )} = 0,

and consequently we get c = 0.

4. Main result

In this section we considerQR-submanifolds of maximalQR-dimension
in a quaternionic space form M(c) which satisfies the conditions (3.1).
But, as already shown in Theorem 1, it is enough to consider the case
of c = 0. Thus, from now on, we let M be an n(> 3)-dimensional QR-
submanifold of maximal QR-dimension satisfying conditions (3.1) in a

quaternionic number space Q(n+p)/4 identified with Euclidean (n + p)-
space Rn+p.

On the other hand, in this case we can easily see from Lemma 3.2 that
the first normal space of M is contained in Span{ξ} which is invariant
under parallel translation with respect to the normal connection ∇⊥
from our assumption. Thus we may apply Erbacher’s reduction theorem
([3, p.339]) to M and can verify that there exists a totally geodesic
Euclidean (n + 1)-space Rn+1 such that M ⊂ Rn+1. We notice that
n+ 1 = 4(m+ 1) for some integer m. Moreover, since the tangent space
TxR

n+1 of the totally geodesic submanifold Rn+1 at x ∈ M is TxM ⊕
Span{ξ}, Rn+1 is an invariant submanifold of R(n+p)/4 with respect to
{F,G,H} (for definition, see [1]) because of (2.3) and (2.4). Hence M
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can be regarded as a real hypersurface of Rn+1 which is a totally geodesic
invariant submanifold of R(n+p)/4.

Tentatively we denote by i1 the immersion of M into Rn+1 and i2
the totally geodesic immersion of Rn+1 onto R(n+p)/4. Then, from the
Gauss equation (2.14), it follows that

∇′i1Xi1Y = i1∇XY + h′(X,Y ) = i1∇XY + g(A′X,Y )ξ′,

where it is denoted by h′ the second fundamental form of M in Rn+1,
ξ′ a unit normal vector field to M in Rn+1 and A′ the shape operator
corresponding to ξ′. Since i = i2 ◦ i1 and Rn+1 is totally geodesic in
R(n+p)/4, we have

∇i2◦i1Xi2 ◦ i1Y = i2∇′i1Xi1Y + h(i1X, i1Y )

= i2(i1∇XY + g(A′X,Y )ξ′),
(4.1)

where h̄ denotes the second fundamental form of Rn+1.

Comparing (4.1) with (2.14), we easily see that

ξ = i2ξ
′, A = A′.(4.2)

Since Rn+1 is an invariant submanifold of R(n+p)/4, for any X ′ ∈ TRn+1,

Fi2X
′ = i2F

′X ′, Gi2X
′ = i2G

′X ′, Hi2X
′ = i2H

′X ′

is valid, where {F ′, G′, H ′} is the induced quaterninic Kähler structure
of Rn+1. Thus it follows from (2.4) that

FiX = Fi2 ◦ i1X = i2F
′i1X = i2(i1φ

′X + u′(X)ξ′)

= iφ′X + u′(X)i2ξ
′ = iφ′X + u′(X)ξ.

Comparing this equation with (2.4), we have φ = φ′, u′ = u. Similarly,
we also get

φ = φ′, u′ = u ψ = ψ′, v′ = v θ = θ′, w′ = w.

Hence M is a real hypersurface of Rn+1 which satisfies the conditions
(3.1) and, moreover it is seen that A′ = ρI. Thus we have

Theorem 2. LetM be a complete n(> 3)-dimensionalQR-submanifold
of maximal QR-dimension in a quaternionic space form M(c). If the
conditions (3.1) hold on M , then M is congruent to

Rn or Sn.
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