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FUZZY COMPACTNESS, FUZZY REGULARITY VIA FUZZY
MAXIMAL OPEN AND FUZZY MINIMAL CLOSED SETS

A. SWAMINATHAN∗ AND S. SIVARAJA

Abstract. The aim of this article is to define fuzzy maximal open cover
and discuss its few properties. we also defined and study fuzzy m-compact
space and discussed its properties. Also we obtain few more results on fuzzy
minimal c-regular and fuzzy minimal c-normal spaces. We have proved that
a fuzzy Haussdorff m-compact space is fuzzy minimal c-normal.
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1. Introduction

Zadeh[11] established fuzzy set in 1965. Chang[3] introduced fuzzy topol-
ogy in 1968. Since fuzzy minimal (resp.maximal) open sets[4], Swaminathan
developed fuzzy mean open sets in [6]. An addendum to fuzzy sets,few more
properties of fuzzy minimal(resp.maximal)set investigated by Swaminathan and
Sivaraja [10] and they have showed “if a fuzzy topological space having both
fuzzy minimal open and fuzzy maximal open set, then it may be fuzzy dis-
connected”.Swaminathan and Sivaraja[9] introduced and investigated fuzzy cut-
point space and related results.

The following terminilogies, “fuzzy minimal open set, fuzzy maximal open
set, fuzzy mean open set, fuzzy clopen set, fuzzy cut-point space, fuzzy con-
nected topological space, fuzzy disconnected topological space and fuzzy topo-
logical space”are respectively abbreviated as “FMIO, FMAO, FMEO, FCLO,
FCS, FCTS,FDTS and FTS.”

In section 2 of this article we define fuzzy maximal open cover.Fuzzy m-
compact space and few properties discussed in Section 3. In section 4, the idea
of fuzzy minimal c-regular (resp.c-normal spaces) are introduced from which We
show that a fuzzy Haussdorff m-compact space is fuzzy minimal c-normal.
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2. Preliminaries

Definition 2.1. [8] A proper FCLO set δ of X is called a FMICLO set if ϑ is
a FCLO set such that ϑ < δ, then ϑ = δ or ϑ = 0X .

Definition 2.2. [8] A proper FCLO set δ of X is called a FMACLO set if ϑ is
a FCLO set such that δ < ϑ, then δ = ϑ or ϑ = 1X .

Definition 2.3. [6] In a fts X, α is called a FMEO(resp.γ FMEC) if ∃ λ, µ( ̸= α)
two distinct proper fuzzy open sets (resp. two distinct proper fuzzy closed sets
β, δ( ̸= γ)) such that λ < α < µ(resp. β < γ < δ)

Lemma 2.4. [9] Each nonzero fuzzy open set γ of a T1-fcts X is infinite and is
not a FMIO in X.

Theorem 2.5. [9] A proper fuzzy open set γ of a T1-fcts X is a FMEO set in
X iff γ ̸= 1X − {xα} for any xα ∈ X.

3. Fuzzy maximal open cover and Fuzzy m-compact space

Firstly we introduce FMAO covers. Further, the idea of fuzzy m-compact
space is studied by means of FMAO covers.

A fuzzy cover C of X is an fuzzy refinement of the fuzzy cover D of X if ∀
α ∈ C, ∃β ∈ C such that α < β.

Definition 3.1. Let C and D be two fuzzy covers of a FTS X.C is an fuzzy
s-refinement of D if ∀ α ∈ C ∃ β ∈ D such that α < β. A fuzzy s-refinement C
of D is said to be a fuzzy open s-refinement of D if all members of C and D are
fuzzy open.

It is observed that if D = {1X} and α ̸= 1X for each α ∈ C, then C is an fuzzy
s-refinement of D. If C is fuzzy s-refinement of D then C is an fuzzy refinement
of D. Further we see that no element of an s-fuzzy refinement of any fuzzy cover
of X is FMAO.

Definition 3.2. A fuzzy open cover C of a fts X is called a FMAO cover of X
if C is not an fuzzy s-refinement of any other fuzzy open cover of X.

Lemma 3.3. A fuzzy open cover containing a FMAO set is fuzzy maximal.

Proof. Obvious �

Theorem 3.4 (Existence of FMAO covers). There exists a FMAO cover in an
infinite T1-fts.

Proof. Let X be an infinite T1-fts. Then ∀ pαx ∈ X, 1X − {pαx} is FMAO set in
X. Let pβx ∈ X. Consider a finite fuzzy subset G = {pαi

x |pαi
x ̸= δ, i ∈ Z; 1 ≤

i ≤ n}.Also α in X is fuzzy closed as X is T1 fts. Henceforth {1X − {pβx}, 1X −
G} is fuzzy open cover of X having FMAO set 1X − {pβx}. Hence by Lemma
3.1,{1X − {pβx}, 1X −G} is FMAO cover of X. �
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Theorem 3.5. Any fuzzy open cover M of an infinite T1-fts is a FMAO cover
of X iff M contains a FMAO set.
Proof. Let M = {Uk|k ∈ V } be a FMAO cover of X such that no Uk,k ∈ V
is FMAO. By Theorem 2.5, Uk is not also FMIO ∀ k ∈ V which implies that
Uk,k ∈ V is FMEO. So ∀ k ∈ V , ∃Vk a proper fuzzy open set such that Uk � Vk.
Let N = {Vk|Uk � Vk, Uk ∈ M}. Clearly N is fuzzy cover of X. Therefore M is
an fuzzy s-refinement of N a contradiction to tha fact that M is a FMAO cover
of X. Hence M has a FMAO sets as one among its members. The converse part
follows by Lemma 3.3. �
Definition 3.6. If every FMAO cover of a fts X has a finite fuzzy open s-
refinement then X is said to be fuzzy m-compact.
Theorem 3.7. Every infinite T1 fcts is fuzzy m-compact.
Proof. Let M be FMAO cover of an infinite T1 fcts X. By Theorem 3.5, M
contains a FMAO set U . By Theorem 2.5, take U = 1X − {pαx} for some
pαx ∈ X. There is an V ∈ M such that pαx ∈ V . By Lemma 3.7, for fuzzy points
pαx , p

β
x ∈ V with pαx ̸= pβx there are fuzzy open sets V1 = 1X − {pαx , pβx},V2 =

V − {pαx},V3 = V − {pβx} of X. Then {V1, V2, V3} is an fuzzy s-refinement of
M. �
Example 3.8. Let X = I. Then F = {0X , β1, β2, β3, β4, 1X} be a FTS where

β1 =

{
1 if x ̸= 1

2
0 if x = 1

2

β2 =

{
0 if x ̸= 1

2
1 if x = 1

2

β3 =

{
1
2 if x ̸= 1

2
1 if x = 1

2

β4 =

{
1
2 if x ̸= 1

2
0 if x = 1

2

Clearly (X,F) is fuzzy compact but not fuzzy m-compact.
Remark 3.1. By Theorem 3.4,the real number space with the usual fuzzy topol-
ogy is fuzzy m-compact but generally it is not fuzzy compact. Since by Theorem
3.7 together with Example 3.8, we conclude that both fuzzy compactness and
fuzzy m-compactness are independent.
Definition 3.9. A function f : X → Y for any two FTSs X and Y is said to be
fuzzy m-continuous,if inverse image of each proper fuzzy open set in Y is FMAO
in X.
Theorem 3.10. Let X be a fuzzy m-compact topological space and f : X → Y
be a bijective fuzzy m-continuous function. Then Y is fuzzy m-compact.
Proof. By assuming the contrary there is no finite fuzzy s-refinement for any
FMAO cover of Y , S(Y ) = {U |U ∈ S(Y )}.As X is fuzzy m-compact S1

(X) =
{f−1(Uk)|Uk ∈ S(Y ), k ∈ Z; 1 ≤ k ≤ n} is finite fuzzy s-refinement of FMAO
cover S(X) = {f−1(U)|U ∈ S(Y )} .As Y is not fuzzy m-compact for each
k ∈ Z; 1 ≤ k ≤ n Uk >U for U ∈ S(Y ) which implies f−1(Uk) > f−1(U) a
contradiction to fuzzy s-refinement of X.This completes the proof. �
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Definition 3.11. A fuzzy point pαx of a fts X is fuzzy m-complete accumulation
point of any fuzzy subset M of X if |U ∧ M | = |M | for each FMAO set U
containing pαx .

Theorem 3.12. Each infinite fuzzy subset of a fuzzy m-compact space has an
fuzzy m-complete accumulation point.

Proof. Let ϑ be an infinite fuzzy subset of a fuzzy m-compact fts X. Assume for
each pγx ∈ X,there is a FMAO set Spαx containing pγx and satisfying |Spαx ∧ϑ| < |ϑ|.
Since {Spαx |p

γ
x ∈ X} is an fuzzy open cover of X consists of FMAO sets, by

Lemma 3.3, {Spαx |p
α
x ∈ X} is a FMAO cover of X. Therefore a finite fuzzy

s-refinement {Spαx |p
γi
x ∈ X, i ∈ Z; 1 ≤ i ≤ n} of {Spαx |p

γ
x ∈ X}.|ϑ| = |

n
∨
i=1

(Spαx ∧
ϑ)| < |ϑ|, a contradiction. �

4. FUZZY MINIMAL c-REGULAR AND FUZZY c-NORMAL
SPACES

Definition 4.1. A fts X is called a fuzzy minimal c-regular if for each pαx ∈ X
and each FMIC set γ with pαx /∈ γ, there exists disjoint fuzzy open sets λ,µ such
that pαx ∈ λ and λ < µ.

Theorem 4.2. Let X be a fts. Then:
(i) X is fuzzy minimal c-regular.
(ii) Given a fuzzy point pαx ∈ X and a FMAO set ω containing pαx ,∃ ϑ,a fuzzy
open set such that pαx ∈ ϑ < Cl(ϑ) < λ.
(iii) Given a fuzzy point pαx ∈ X and a FMIC set γ with pαx /∈ ω, ∃ ωa fuzzy
open set containing pαx such that Cl(ω) ∧ γ = 0X .

Proof. (i) ⇒ (ii), (ii) ⇒ (iii), (iii) ⇒ (i) : Proof follows. �

Definition 4.3. A fts X is called a fuzzy minimal c-normal if for each pair of
distinct FMIC sets η, γ there exists disjoint fuzzy open sets λ,µ such that η < λ
and γ < µ.

Theorem 4.4. Let X be a fts. Then:
(i) X is fuzzy minimal c-normal.
(ii) For each FMIC set α and each FMAO set ω with α < ω ,∃ ϑ,a fuzzy open
set such that α < µ < Cl(ϑ) < ω.
(iii) For each pair of distinct FMIC sets α,β ,∃ ω, ϑ disjoint fuzzy open sets such
that α < ω, Cl(ω) ∧ β = 0X and β < ϑ, Cl(ϑ) ∧ α = 0X .
(iv) For each pair of distinct FMIC sets α,β,∃ ω, ϑ,disjoint fuzzy open sets such
that α < ω, β < ϑ and Cl(ω) ∧ Cl(ϑ) = 0X .

Proof. (i) ⇒ (ii): Obvious.
(ii) ⇒ (iii):Suppose that α < 1X − β for any FMAO set 1X − β.By (ii) ∃ ω

an fuzzy open set such that α < ω < Cl(ω) < 1X −β.Clearly Cl(ω)∧β = 0X as
Cl(ω) < 1X − β. By assuming ϑ = 1X − Cl(ω),we get β < ϑ < 1X − ω < 1X −



Fuzzy compactness, fuzzy regularity via fuzzy maximal open and fuzzy minimal closed sets 189

α.Since,1X−ϑ is fuzzy closed,β < Cl(ϑ) < 1X−ω < 1X−α.Clearly,Cl(ϑ)∧α =
0X as Cl(ϑ) < 1X − α.It is evident that ω,ϑ are distinct.

(iii) ⇒ (iv): By (iii),For any distinct fuzzy open sets ω,ϑ such that α <
ω,Cl(ω)∧β = 0X and β < ϑ,Cl(ϑ)∧α = 0X . As Cl(ω)∧β = 0X , Cl(ϑ)∧α = 0X
imply that Cl(ω) ∧ Cl(ϑ) = 0X .

(iv) ⇒ (i): Proof is easy and hence omitted. �

Theorem 4.5. Every fuzzy Hausdorff m-compact space is fuzzy minimal fuzzy
c-regular.

Proof. Let fts X be a fuzzy Hausdorff m-compact. Suppose γ ∈ X is FMIC set
and pαx ∈ X such that pαx /∈ λ. Since X is fuzzy Hausdorff, for each pβx ∈ λ,
we have λβ , µβ disjoint fuzzy open sets such that pαx ∈ λβ ,pβx ∈ µβ . Let G =
{µβ |pβx ∈ λ} ∨ {1X − λ}. Then G is FMAO cover of X by Lemma 3.1. By fuzzy
m-compactness of X, then we have a finite fuzzy s-refinement H of G.Let λ =
{Λ ∈ H|Λ ∧ λ ̸= 0X}.So λ is an fuzzy open set which contains λ.Let Λ1,Λ2...Λn
be the only fuzzy members of H such that Λk ∧ λ ̸= 0X ,k ∈ Z, 1 ≤ k ≤ n. For
each k ∈ Z, 1 ≤ k ≤ n,∃ pβk

x ∈ λ such that Λk �µβk
,k ∈ Z, 1 ≤ k ≤ n. We put

µ =
n
∧
k=1

λβk
. Then pαx ∈ µ.It is easy to show that λ ∧ µ = 0X . �

Corollary 4.6. A fuzzy Hausdorff m-compact space is fuzzy minimal c-normal.

Proof. Let α,β be distinct FMIC sets in fuzzy Hausdorff fuzzy m-compact space
X. By theorem 4.3, X is fuzzy minimal c-regular. Hence for each pδx ∈ α, ∃
U, V fuzzy open sets such that pδx ∈ U ,β < V and U ∧ V = 0X . The collection
G = {ηα|pδx ∈ α}∨{1X−α} is a FMAO cover ofX by Lemma 3.1.Now proceeding
like the proof of Theorem 4.3, we get two fuzzy open sets η and µ such that α < λ,
β < µ and U ∧ V = 0X . �

Lemma 4.7. If Y is a fuzzy closed (resp.fuzzy open) subset of a fts X, then
FMIC (resp.FMIO) sets in the subspace Y of X are FMIC (resp.FMIO) sets in
X.

Proof. Let α be a FMIC set in Y ,a fuzzy closed subset of a fts X.Evidently α is
also fuzzy closed in X as α = η ∧ Y for any fuzzy closed set η in X . If possible,
suppose we have a fuzzy closed set γ in X such that γ < α. Clearly γ ∧ Y is
fuzzy closed in Y such that γ ∧Y < γ < α; either γ ∧Y = α or γ ∧Y = 0X as α
is FMIC in Y .γ ∧ Y = α implies that γ ∧ Y = α = γ. Now it is enough to prove
that γ = 0X for γ ∧ Y = 0X . We see that γ < α < Y as α is a fuzzy subset of
Y . So we have γ ∧ Y = γ ̸= 0X if γ ̸= 0X . Hence ,γ = 0X .
Similarly, we can prove for the fuzzy open sets. �

Definition 4.8. A fuzzy subspace Y of a fts X is said to be FMIC (resp.FMIO)
invariant if FMIC (resp.FMIO) sets of Y are also FMIC (resp.FMIO) sets of X.

Theorem 4.9. FMIC invariant fuzzy subspaces of fuzzy minimal c-normal
spaces are fuzzy minimal c-normal.
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Proof. Let α,β be two distinct FMIC sets in Y ,a FMIC invariant fuzzy subspaces
of a fuzzy minimal c-normal space X.Hence α,β are FMIC sets in X. As X is
fuzzy minimal c-normal space, ∃ η,µ distinct fuzzy open sets in X such that
α < η,β < µ and (Y ∧ η)∧ (Y ∧µ) = 0X .That is Y ∧ η ; Y ∧µ are distinct fuzzy
open sets in Y such that α < (Y ∧ η) and β < (Y ∧ µ). �
Corollary 4.10. Each fuzzy closed subspace of a fuzzy minimal fuzzy c-normal
space is fuzzy minimal fuzzy c-normal.

Proof. Using Lemma 4.5, we have to proceed like that of theorem 4.6. �
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