• Title/Summary/Keyword: matrix theory

Search Result 1,009, Processing Time 0.022 seconds

A Study on the Dynamic Behavior of Cracked Pipe Conveying Fluid Using Theory of Timoshenko Beam (티모센코 보이론을 적용한 크랙을 가진 유체유동 파이프의 동특성에 관한 연구)

  • 손인수;안성진;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.958-963
    • /
    • 2003
  • In this paper a dynamic behavior of simply supported cracked pipe conveying fluid with the moving mass is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appears more greatly.

  • PDF

CANONICAL FORM OF AN TRANSITIVE INTUITIONISTIC FUZZY MATRICES

  • LEE, HONG-YOUL;JEONG, NAE-GYEONG
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.543-550
    • /
    • 2005
  • Some properties of a transitive fuzzy matrix are examined and the canonical form of the transitive fuzzy matrix is given using the properties. As a special case an open problem concerning idempotent matrices is solved. Thus we have the same result in a intuitionistic fuzzy matrix theory. In our results a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix play an important role. We decompose a transitive intuitionistic fuzzy matrix into sum of a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix. Then we obtain a canonical form of the transitive intuitionistic fuzzy matrix.

  • PDF

Determinant Eigenvalue and Inverse Matrix of a Tridiagonal Matrix (삼대각선행열의 행열식 고유값 및 역행열)

  • Lee, Doo-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.455-459
    • /
    • 1986
  • A large set of linear equations which arise in many applications, such as in digital signal processing, image filtering, estimation theory, numerical analysis, etc. involve the problem of a tridiagonal matrix. In this paper, the determinant, eigenvalue and inverse matrix of a tridiagoanl matrix are analytically evaluated.

  • PDF

Design of PD Observers in Descriptor Linear Systems

  • Wu, Ai-Guo;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.93-98
    • /
    • 2007
  • A class of new observers in descriptor linear systems, proportional-derivative(PD) observers, are proposed. A parametric design approach for such observers is proposed based on a complete parametric solution to the generalized Sylvester matrix equation. The approach provides complete parameterizations for all the observer gains, gives the parametric expression for the corresponding left eigenvector matrix of the observer system matrix, realizes elimination of impulsive behaviors, and guarantees the regularity of the observer system.

Recent developments of constructing adjacency matrix in network analysis

  • Hong, Younghee;Kim, Choongrak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1107-1116
    • /
    • 2014
  • In this paper, we review recent developments in network analysis using the graph theory, and introduce ongoing research area with relevant theoretical results. In specific, we introduce basic notations in graph, and conditional and marginal approach in constructing the adjacency matrix. Also, we introduce the Marcenko-Pastur law, the Tracy-Widom law, the white Wishart distribution, and the spiked distribution. Finally, we mention the relationship between degrees and eigenvalues for the detection of hubs in a network.

A STUDY ON THE OPTIMAZATION OF CONSTRUCTION MANAGEMENT BY USING A DESIGN STRUCTURE MATRIX

  • Nobuyuki Suzuki;Aketo Suzuki
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.383-388
    • /
    • 2005
  • In the construction industry, complex works are carried out with significant resources under non-linear circumstances where clear concepts of project management could be of benefit to all parties and personnel involved. In this paper, we define the optimum project management configuration for construction management by using DSM (Design Structure Matrix). Furthermore DSM can be visualized as a network model, and then Graph Theory provides us the numerical results.

  • PDF

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

Derivation of the Fisher Information Matrix for 4-Parameter Generalized Gamma Distribution Using Mathematica

  • Park, Tae Ryong
    • Journal of Integrative Natural Science
    • /
    • v.7 no.2
    • /
    • pp.138-144
    • /
    • 2014
  • Fisher information matrix plays an important role in statistical inference of unknown parameters. Especially, it is used in objective Bayesian inference where we calculate the posterior distribution using a noninformative prior distribution, and also in an example of metric functions in geometry. To estimate parameters in a distribution, we can use the Fisher information matrix. The more the number of parameters increases, the more its matrix form gets complicated. In this paper, by using Mathematica programs we derive the Fisher information matrix for 4-parameter generalized gamma distribution which is used in reliability theory.

ASSVD: Adaptive Sparse Singular Value Decomposition for High Dimensional Matrices

  • Ding, Xiucai;Chen, Xianyi;Zou, Mengling;Zhang, Guangxing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2634-2648
    • /
    • 2020
  • In this paper, an adaptive sparse singular value decomposition (ASSVD) algorithm is proposed to estimate the signal matrix when only one data matrix is observed and there is high dimensional white noise, in which we assume that the signal matrix is low-rank and has sparse singular vectors, i.e. it is a simultaneously low-rank and sparse matrix. It is a structured matrix since the non-zero entries are confined on some small blocks. The proposed algorithm estimates the singular values and vectors separable by exploring the structure of singular vectors, in which the recent developments in Random Matrix Theory known as anisotropic Marchenko-Pastur law are used. And then we prove that when the signal is strong in the sense that the signal to noise ratio is above some threshold, our estimator is consistent and outperforms over many state-of-the-art algorithms. Moreover, our estimator is adaptive to the data set and does not require the variance of the noise to be known or estimated. Numerical simulations indicate that ASSVD still works well when the signal matrix is not very sparse.

A Study on Linear Matrix Inequalities Robust Active Suspension Control System Design Algorithm

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.105-109
    • /
    • 2008
  • A robust optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory is presented. The validity of the linear matrix inequalities robust control system design in active suspension system through the numerical examples is also investigated.