International Journal of Control, Automation, and Systems, vol. 3, no. 2, pp. 159-165, June 2005 159

Unified Parametric Approaches for Observer Design in Matrix
Second-order Linear Systems

Yun-Li Wu and Guang-Ren Duan

Abstract: This paper designs observers for matrix second-order linear systems on the basis of
generalized eigenstructure assignment via unified parametric approach. It is shown that the
problem is closely related with a type of so-called generalized matrix second-order Sylvester
matrix equations. Through establishing two general parametric solutions to this type of matrix
equations, two unified complete parametric methods for the proposed observer design problem
are presented. Both methods give simple complete parametric expressions for the observer gain
matrices. The first one mainly depends on a series of singular value decompositions, and is thus
numerically simple and reliable; the second one utilizes the right factorization of the system,
and allows eigenvalues of the error system to be set undetermined and sought via certain
optimization procedures. A spring-mass system is utilized to show the effect of the proposed

approaches.
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1. INTRODUCTION

Matrix second-order linear (MSOL) systems
capture the dynamic behavior of many natural
phenomena, and have found applications in many
fields, such as vibration and structural analysis,
spacecraft control and robotics control, and hence
have attracted much attention [1-11]. In this paper, we
consider the contro} of the following matrix second-
order dynamical linear system

{Mc'j+Dq+Kq:Bu 0

¥y =Rq+Qq,

where geR", ueR” and yeR™ are the state

vector, the control vector and the output vector,
respectively; M, D,K,B,Q and R are the system

coefficient matrices of appropriate dimensions. In
certain applications, the matrices M,D and K are

usually called the mass matrix, the structural damping
matrix and the stiffness matrix, respectively. These
coefficient matrices satisfy the following assumption.
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Assumption Al: rank[R Q]=m.

Concerning -the control of the MSOL system (1),
most of the results are focused on stabilization [4,5],
eigenstructure assignment [6,7] and the controllability
and observability theory [8,9]. However, only a few
scholars have paid attention to observer design for
matrix second-order systems [10,11]. A type of
observers for MSOL systems was proposed in [10]
through taking different scenarios of available
measurements into consideration. In [11], a class of
observers for MSOL systems was constructed by
utilizing unknown input observer methods and was
used in a robust fault detection scheme and also used
as an adaptive detection scheme for a certain class of
actuator faults.

Many theoretical results for matrix second-order
systems have been developed via the corresponding
extended first-order state-space model

z=A4,z+ B,u
{ e e (2)
Y= Ceza
where
q 0 !
zZ=1 .1 Ae = -1 -1 ? (33)
q -MTK -M™D
0
B, :{M_IBJ’ c.=lo R]. (3b)
Therefore, these results inevitably involve

manipulations on 2n dimensional matrices A4,, B,

and C,. While in this paper, the approach developed



160 Yun-Li Wu and Guang-Ren Duan

utilizes directly the original system data M, D, K, B, 0
and R, and thus involves manipulations on »n-
dimensional matrices only.

This paper considers observer design for a class of
MSOL systems on the basis of generalized
eigenstructure assignment. Base on a series of singular
value decompositions and the right factorization of the
system, two complete parametric approaches are
proposed. Very simple, complete parametric expressions

for matrix gains of the observer system are established.

These expressions contain a group of parameter
vectors that represent the design degrees of freedom.
Particularly, with the approach using right
factorization, besides this group of parameters, the
eigenvalues of the error system may also be treated as
part of the design degrees of freedom since they
appear as parameters in the expressions of the matrix
gains of the observer system, and hence are not
necessarily chosen a priori. This approach can provide
all the degrees of design freedom that can be further
utilized to achieve additional system specifications
[12-16].

The paper is composed of 6 sections. Section 2
gives the formulation of the observer design problem
for the considered class of MSOL systems, whilst
Section 3 presents some preliminary results. The
general parametric approaches to a generalized
eigenstructure assignment problem is developed in
Section 4. In Section 5, an example is presented to
demonstrate the utility and the effect of the proposed
approaches. Concluding remarks follow in Section 6.

2. PROBLEM FORMULATION

For the MSOL dynamical system (1), consider the
following full-order observer
(M + LR)G +(D + iR + L,0)g +(K + L,O)]
= Bu+ Ly + Ly, @)

where L;,L, e R™™ are observer gain matrices; the

vectors §,§eR" are the estimated state and the
corresponding estimated state derivative satisfying

lim(§—¢) = lim(g-¢)=0. 5
f—o0 —o

Denotee = g — g, then the error system from (1) and
(4) is obtained as follows:

Mé+Dé+Ke=0, 6)
where
M=M+L,R,D=D+LR+L,0,K=K+LQ.

Under the following constraint

Constraint C1: detM =0,
the error system (6) can be written in the first-order
state space form

T=A4,,7, (N
where .

e 0 I

5= oA, =l — = S 8

: u o [—M’IK —M‘lD} ®

Recall the fact that a non-defective matrix
possesses eigenvalues which are less insensitive to the
parameter perturbations in the matrix, we here require
that the matrix 4,, to be non-defective, that is, the

Jordan form of the matrix A4,, possesses a diagonal
form:

A =diag(sy, 2.0 52,) » . ' ©)

where s,,i=12,...,2n, are clearly the eigenvalues of
the matrix 4,, . ‘
Lemma 1: Let 4,,and A be given by (8) and (9),

respectively. Then there exist matrices T,,T; € C™*"
satisfying

il rtla,, =Arr 11, (10)
if and only if

NTIM AT D+T] K+ AZTR+ZTQ=0 (11)

and

1l =-A'T (K + 1,0), (12)
where

=M, 2T =T L AT L (1)

Proof: Since equation (10) can be divided into the
following equations

~-TIM'K = ATT (14)
!l -1 M~'D=AT]. )

Pre-multiplying (15) by A and substituting (14) into
the obtained equation, yields

AZTéT +ATe‘TM_15+TéTA7_lE=0. (16)

Substituting the representations of D and K into
(16), we can obtain (11) after some manipulation by
using (13). In addition, Pre-multiplying (14) by AL,
the equation (12) is easily obtained. 0

The above lemma states that the Jordan matrix of

A, is A if and only if there exists T, e C™2"

satisfying (11) and (12), in this case the corresponding
left eigenvector matrix of 4., is given by

rh=(r] 1/1=[-A'TSK T M. (17)



Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems 161

With the above understanding, the problem of
observer design in the second-order dynamical system
(1) can be stated as follows.

Problem OD (Observer Design): Given system (1)
satisfying Assumption Al, and the matrix A given
in (9), with s;, i=12,...,2n, being a group of self-
conjugate complex numbers (not necessarily distinct),
find a general parametric form for the matrices
L,L, eR™™ and T, eC>™2" such that the
matrix equation (11) and det7,, # 0 hold.

On the other hand, after transpose on the both sides
of (11), we can obtain

T A2 TF TT T T
MTT,A? + DTT A+ KT, + RTZA + 0T Z =0 .(18)

Clearly, equation (18) becomes the type of
generalized Sylvester matrix equation investigated in
[14,15]when M =0 and R =0. Due to this fact, the
equation (18) is called the second-order generalized
Sylvester matrix equation.

It follows from the above deduction that, once a
pair of matrices 7, and Z satisfying the second-
order generalized Sylvester matrix equation (18) and
the condition detTy, #0 are obtained, a pair of
observer gain matrices can be easily obtained from the
second equation in (13) as follows:

;AT ZT (19)

T T =T
L L51" =[T;

Therefore, to solve Problem OD, the key step is to
find a solution to the following problem.

Problem SGSE (Second-order Generalized Sylvester
Equation): Given the matrices, M, D, K ¢ R"™" |
Q,R e |
diagonal matrix (9) find a parameterization for all the
matrices T, € C™?" and Z e C"™?" satisfying the

matrix equation (18).

satisfying Assumption Al, and a

3. SOLUTION TO PROBLEM SGSE

Denote
L=l 6 - ], (20)
Z=[Zl 22 2211]’ (21)

then, in view of (9), we can convert the second-order
generalized Sylvester matrix equation (18) into the
following column form

2447 T T T T
(siM* +s5;D" + K" ) t; +(s5;R" +Q" )z; =0,
i=12,...2n. (22)

3.1. Case of prescribed s;, i=12,...,2n

The equations in (22) can be further written in the
following form

s
QD{ ’}:0, i=12,...2n, (23)
Zj
where
@, =[s}MT +5;,DT +kT 5;RT +071, (24)
i=12,....2n.

This states that

Zi

t.
{’JeKercp,., i=12,..2n. (25)

The following algorithm produces two sets of
constant matrices N; and D;, i=12,....2n, to be

used in the representation of the solution to the matrix
equation. ‘
Algorithm P1 (Solving N;and D;, i=12,....2n):
Step 1: Applying SVD to the matrix &;, i=1,2...,
2n gives

7

PD.O. =
i lQl O 0

[diag[al oy - o, 0} 26)

where P, eC™" and Q; e C"H™ 1M are two
orthogonal matrices; o;>0, j=L2,..,n;, are the

singular values of ®;, and

n; =rank[s,-2MT +sl-DT +KkT SiRT +0"1,(27)
i=12,...2n.

Step 2: Obtain the matrices N, e R ") and
D; e R™¥mtm=ni) i _ 13 ...2n, by partitioning the

matrix ; as follows:
* Nz'
Q; = , 1=12,....2n. (28)

As a result of (26), the matrices N; e R™(mm=ni)

and D; e gntmen) - p-12,...2n , obtained
through the above Algorithm P1 satisfy
N,
gbi[ ’}:0, i=12,...2n. (29)
D;

This indicates that the columns of [N] D717 form
a set of basis for Kerd; .

The above deduction clearly yields the following
result.

Theorem 1: Let n;, i=12,...,2n, be defined by
(27), and N; e RVUHmm) ang D, e ROEmom)
i=12,...,2n, be obtained via Algorithm P1. Then all
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the matrices 7, and Z satisfying the second-order

generalized Sylvester matrix equation (18) can be
parameterized by columns as follows:

fi —Nif i=12,...,2 (30)
Zl' - Di i 1=12,...,21, )

where f; eC™T"T | i=12,...
arbitrary parameter vectors.
Regarding the observability of system (1), we have
the following lemma.
Lemma 2 [9]: System (1) is observable if and only
if

J2n , are a set of

SR+Q

rank| , =n, VseC. 3D
s°M+sD+K

Based on the above lemma, the following corollary
of Theorem 1 can be immediately derived.

Corollary 1: Let system (1) be observable, and A
be given by (9), then the degrees of freedom existing
in the general solution to the second-order generalized
Sylvester matrix equation (18) is 2nxm .

Proof: Due to the observability of system (1), we
have from Lemma 2 »n; =n, i=12,...,2n. Thus the

conclusion immediately follows from Theorem 1. O

3.2. Case of undetermineds;, i=12,...,2n
By performing the right factorization of
Gs)=(*MT +D s+ KTy '\ RTs+07),
we can obtain a pair of real coefficient polynomial
matrices N(s)eR™™[s] and D(s)e R"™"[s]
satisfying
(s*MT +D s+ KTy Y (RTs +Q") =—N(s)D'(5) .(32)
Theorem 2: Let system (1) be observable, and
N(s)eR™™[s] and D(s)e R™™[s] satisfying the

right factorization (32). Then
1) The matrices T, and Z given by (20), (21) and

¢ N(s;) .
L}:[ ]f i=12,...,2n (33)

i
satisfy the second-order generalized Sylvester

matrix equation (18) forall f; eC™.
2) When

l=m, i=12,...2n (34)

hold, (33) gives all the solutions to Problem SGSE.
Proof: It follows from (32) that

(siM" +5.D" + KT)N(s) +(s;R" + Q") D(s;) = 0.
(35)

Using (33) and (35) yields
(sPMT +5.D" + KTyt +(s;,RT + 0"z,
=[(s*MT +5,D" + KT)N(s,) + (s,RT + QT)D(s)1f; -
=0,i=12,..,2n

This states that the equations in (22) hold. Therefore,
the first conclusion of the theorem is true. 0

It follows from Corollary 1 that, under the
observability of system (1), the degrees of freedom
existing in the general solution to the matrix equation
(18) with A given by (9) is 2mm, while in the
solution (33), the number of free parameters just equal
to 2nm. Further, it is clear that all the parameters in
the solution (33) have contributions when condition
(34) holds. With this we complete the proof.

4. SOLUTION TO PROBLEM OD

Regarding solutions to Problem OD, we have the
following results based on the discussion in Section 2
and the results in Section 3.

Theorem 3: Let n;, i=12,....2n, be defined by

@27), and N, e R™CHm) and  p; e ROEmon)
i=1,2...,2n, be given by Algorithm P1. Then
1) Problem OD has solutions if and only if there

exist a group of parameters f; € C"™" " | i=1,2....2n,

satisfying Constraint Cl and the following
constraints:
Constraint C2: f; =fj if 5;=5;,
Constraint C3: detT,, #0,
Constraint C4a: det7,, #0 with
= z[ Nifi Nofs Nonfon }
O siNifL saNy s SoanNawFan |

2) When the above conditions are met, all the
solutions to the Problem OD are given by

L L1 =T IDfi Dufs Dy, f241" (36)
and

Too =11, TS =F(fisp), (37)
where F(*) represents a nonlinear function matrix
with respect to the variable * and its expression is
shown in (17).

Theorem 4: Let system (1) be observable, and
N(s)eR™™[s] and D(s)e R™[s] be a pair of
polynomial matrices satisfying the right factorization
(32). Then

1) Problem OD has solutions if and only if there
exist a group of parameters f; eC™, i=12,....2n,
satisfying Constraint C1-C3 and
Constraint C4b: detT,, #0 with
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= z[ N(s)f, N(s,)fs N(s3,) fon }
TSNS N 523N (52, f2n |

2) When the above conditions are met, all the
solutions to the Problem OD are given by

(L LY =T, [D(s)fi D(s))fs D(s;) £, 1
(38)

and
T, =1T) T/1T =F( f. 5, (39)

where F(*) represents a nonlinear function matrix

with respect to the variable * and its expression is
shown in (17).

The proof of the above two theorems can be easily
carried out based on the discussion in Section 2 and
the results in Section 3. The only thing which needs to
be mentioned is that Constraint C2 is required because
it is a necessary and sufficient condition for the
matrices L; and L, given by (36) or (38) to be real.

In the rest of this section, let us give some remarks
to the above results.

Remark 1: It follows from well-known pole
assignment result that Problem SGSE has a solution
when the system (1) is observable and the eigenvalues
of the error system (6) s;, i=12,...,2n, are distinct.
In this case, there exist parameter vectors f,
i=12,...,2n, satisfying Constraint C4a or C4b. As a
matter of fact, it can be reasoned that, in this case,
“almost all” parameter vectors f;, i=12,...,2n, satisfy
Constraint C4a or C4b. Therefore, in such
applications Constraint C4a or C4b can be often
neglected.

Remark 2: The above two theorems give complete
parametric solutions to the Problem SGSE. The free
parameter vectors f;, i=12,...,2n , represent the
degrees of freedom in the eigenstructure assignment
design, and can be sought to meet certain desired
system performances.

Remark 3: The solution given in Theorem 3
utilizes only a series of singular value decompositions,
and hence is numerically very simple and reliable. As
for the solution given in Theorem 4, it has the
advantage that the eigenvalues of the error system (6)
s;, i=12,...,2n, can be set undetermined and used

as a part of extra design degrees of freedom to be
sought with f;, i=1,2...,2n, by certain optimization
procedures.

Remark 4: Regarding solutions to the right
coprime factorization (32), several methods have been
given in [13] (see also [14]). Numerical methods can
be found in [15,16].

Remark 5: The eigenstructure assignment results
can be easily extended into the defective case, that is,
the case that the error system possesses a general Jordan

Fig. 1. The mass-spring-dashpots system.

form. However, from the control system design point
of view, this is not desired since the eigenvalues of
defective matrices are more sensitive to parameter
perturbations than those of non-defective matrices.

5. AN EXAMPLE

Consider a simple linear dynamical system
consisting of three lumped mass-spring-dashpots,
connected in series and fixed at one end as shown in
Fig. 1. [6]. When m=1, ky=ky =5, k3=20 and
¢y =c3=2, ¢y =05, the equation of motion can be
written in the form of (1) with

M =diag(1,1,1),

25 ~05 0 10 -5 0
D=|-05 25 -2} K=|-5 25 =-20],
0o -2 2 0 -20 20
1 0
100 000
B=l0 0|, R= , 0= .
- 00 0 00 1

It is verified according to Lemma 2 that this system
is observable.

5.1. Case of prescribed s;, i=12,...,6
Given the eigenvalues of the error system in the
form of (6)
5p==3-1, s, =-3+1, s5,=-1-0.5i,
s4==1+0.51, sg=-2~1.51, s¢ =—2+1.51.
After the SVD decomposition to the matrix ¢; in

the form of (24), we can obtain N; and D, ,
i=12,...,6, as follows:

[0.2818+0.0118 —0.0027 F 0.0095i |
N, =]0.0435£0.0290i —0.0243F0.0238i |,
0.0202£0.0261i —0.0537F0.0271i |
[0.1887F0.05981 —0.0954F 0.0583i |
N34 =|0.1368+0.0022i —0.1882F0.1055i |,
0.1292+0.0099i —0.2249F 0.1106i |
[0.3220F0.0576i  0.0114 F0.0320i
Nsg=10.0671£0.0729i -0.0161F 0.0641i |,
0.0337£0.0827i —0.0481F 0.0685i
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Dy, - [0.9574F0.0094i 0.0028 +0.0027i |
*10.0018+0.0005i 0.9976F 0.0006i |’

Dy = {0.961110.009% - 0.0371+0.0361i | ,
*0.0375F0.0088i 0.9356 F 0.0150i |

Dsg = [0.935170.0264i  0.0004 +0.0138i | .
®10.0076 £0.0018i 0.9936 F 0.0035i |

A group of parameter vectors f;, i=12,...,6, are

arbitrarily chosen to satisfy Constraints C1-C4a and
the condition detT,, #0,

1 -0.2 -2
J(l,z:[o_s} f3,4={ ( }, f5,6={: . }

Then we can obtain the gain matrices

5.9632 1.8581
L; =|-33.3582 -16.2385
26.7726 12.4177
and
1.9705 2.1215
L, =|—-18.5733 —-20.0546].
15.7585 19.0313

5.2. Case of undetermined s;, i=12,...,6
The right coprime polynomial matrices N(s) and
D(s) can be easily solved as

0 —25% =205
N(s)=| —25*-20s 0
—s?-2552-25s 0.55*+5s
and
D(s)=
-s2 -20s-100

s° +4.55* + 465 + 2057 +100s
25% +255% +70s + 200
-0.55* - 65% - 2052 -100s |
The same eigenvalues and parameter vectors f;,
i=12,...,6, as Case 1 are selected, which can meet
Constraints C1-C4b and the condition det7,, # 0. So
the gain matrices are obtained as:

56.43 3.28 15.1503 1.7042

Ly =|-123.69 1252 |, L, =]11.1146 -2.0408]|.
1356 -9.20 15.5561 5.1488
6. CONCLUDING REMARKS

The type of proportional-differential observers for a
class of MSOL systems is proposed directly in_ the

matrix second-order framework and based on
generalized eigenstructure assignment via unified
parametric approaches. Through establishing two
general parametric solutions to this type of matrix
equations, two unified complete parametric methods
for the proposed observer design problem are
presented. The first one mainly depends on a series of
singular value decompositions, and is thus
numerically simple and reliable; the second one
utilizes the right factorization of the system, and
allows eigenvalues of the error system to be set
undetermined and sought via certain optimization
procedures. Also the two approaches can provide all
the degrees of design freedom that can be further
utilized to achieve additional system specifications.
The example shows the effect of the two approaches.
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