The purpose of this study is to understand the learning mathematics in elementary mathematics classroom by considering mathematics as a kind of social practices and mathematics classroom as a kind of community of practice. The research questions of this study are as followings: 1) Do the identities which teacher has on mathematics and teaching mathematics, influence the social practices formed in mathematics classroom, and the identities which students has on mathematics and learning mathematics? 2) Do the social practices formed in mathematics classroom, and the identities which students has on mathematics and learning mathematics, influence the identities which teacher has on mathematics and teaching mathematics? This study was based on ethnomethodology. It was executed participation observations, interviews and surveys with teacher and 5 graders to collect the data for the social practices formed their classroom and their identities, and was analyzed the interaction between the social practices of mathematics classroom and teacher and students' identities. We found the scenes that teacher's identities influenced the social practices of mathematics classroom and students' identities, and also the scenes that the social practices of mathematics classroom and students' identities influenced teacher's identities. So, we could know that there existed the interaction between the social practices of mathematics classroom and teacher and students' identities.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.3
/
pp.681-700
/
2010
These days, the importance of the mathematics interaction is strongly emphasized, which leads to the need of research on how the interaction is being practiced in the math class and what can be the desirable interaction in terms of mathematical thinking. To figure out the correlation between the mathematical interaction patterns and mathematical thinking, it also classifies mathematical thinking levels into the phases of recognizing, building-with and constructing. we can say that there are all of three patterns of the mathematics interactions in the class, and although it seems that the funnel pattern is contributing to active interaction between the students and teachers, it has few positive effects regarding mathematical thinking. In other words, what we need is not the frequency of the interaction but the mathematics interaction that improves students' mathematical thinking. Therefore, we can conclude that it is the focus pattern that is desirable mathematics interaction in the class in the view of mathematical thinking.
The paper deals with the interaction between three Griffith cracks propagating under antiplane shear stress at the interface of two dissimilar infinite elastic half-spaces. The Fourier transform technique is used to reduce the elastodynamic problem to the solution of a set of integral equations which has been solved by using the finite Hilbert transform technique and Cooke’s result. The analytical expressions for the stress intensity factors at the crack tips are obtained. Numerical values of the interaction efect have been computed for and results show that interaction effects are either shielding or amplification depending on the location of each crack with respect to other and crack tip spacing. AMS Mathematics Subject Classification : 73M25.
In the curved geometries, from the solution of the classical Riemann problem in the plane, the asymptotic solutions of the compressible Euler equation are presented. The explicit formulae are derived for the third order approximation of the generalized Riemann problem form the conventional setting of a planar shock-interface interaction.
This study engages in the features of interaction in elementary school mathematics lessons as reflected in the class discourse. 28 pre-service teachers documented the discourse during observation of their tutor-teachers' lessons. Mapping the interaction patterns was performed by a unique graphic model developed for that purpose and enabled providing a spatial picture of the discourse conducted in the lesson. The research findings present the known discourse pattern "initiation-response-evaluation / feedback" (IRE/F) which is recurrent in all the lessons and the teacher's exclusive control over the class discourse patterns. Hence, the remaining time of the lesson for the pupils' discourse is short and meaningless.
Teaching and learning mathematics in a classroom setting is based on the interactions between the teacher and her students. Using classroom observations and interviews of students and the teacher, this research examines a first-year teacher and her students' interactions in the mathematics classroom. In this mathematics classroom, teacher and students interaction had inconsistency between mathematical topics and non-mathematical topics. For non-mathematical topics, their interactions were very active but for mathematical topics their interactions were very limited. This paper ends with raising questions for future research and calling for the opportunities for first-year teachers to reflect on their interactions with their students, in particular about mathematical topics.
Students' participation in epistemic practices, which are related to knowledge construction on the part of students, is becoming a crucial part of learning (Goizueta, 2019). Research on epistemic practices in science education draws attention to teachers' support of students to engage in epistemic practices in mathematics instruction. The research highlights a need for incorporating epistemic goals, along with conceptual and social goals, into instruction to promote students' epistemic practices. In this paper, I investigate how teachers interact with students to integrate epistemic goals. I examined 24 interaction excerpts that I identified from six interview transcripts of two beginning teachers' mathematics instruction. Each excerpt was related to the teachers' talk about their specific interaction(s) in a small group. I explored how each teacher's discursive moves and goals were conceptual, social, and epistemic-related as they intervened in small groups. I found that both teachers used conceptual, social, and epistemic discursive move but their discursive moves were related only to social and social goals. This paper suggests supporting teachers to develop epistemic goals in mathematics instruction, particularly in relation to small groups.
정보화시대를 맞아 어느 때보다도 활발히 전교과에 걸쳐 학생의 의사소통의 능력을 향상하기 위한 다양한 방법이 모색되고 있다. 학교현장의 수학교육자는 수학교수-학습에서 어떤 상호작용이 일어났는지, 특히 다루기 쉬운 도구로써 계산기가 주어졌을 때 어떻게 학생의 지식 발달이 언어적 상호작용에서 이루어지는지를 알아야 한다. 본 연구는 이러한 학생의 상호작용을 분석할 때 필요한 분석도구를 개발하는 것이다. 예비연구와 본 연구를 통해 언어적 상호작용의 구성요소가 세 영역, 즉, 지식구성 진술, 사회적 상호작용 진술, 그리고 교사의 교육어 진술에서 개발되었다. 본 연구에서 개발한 자료를 이용하여 특히 학생의 지식 구성 발달에 따른 상호작용의 구성요소의 특징을 파악하고 이에 필요한 언어적 상호작용의 역할과 활성화 방안을 모색하는 연구가 가능하다.
A tumor immune interaction is a main topic of interest in the last couple of decades because majority of human population suffered by tumor, formed by the abnormal growth of cells and is continuously interacted with the immune system. Because of its wide range of applications, many researchers have modeled this tumor immune interaction in the form of ordinary, delay and fractional order differential equations as the majority of biological models have a long range temporal memory. So in the present work, tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and interleukin-2 (IL-2) are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Furthermore, existence and local stability of fixed points are investigated for discrete model. Moreover, it is proved that two types of bifurcations such as Neimark-Sacker and flip bifurcations are studied. Finally, numerical examples are presented to support our analytical results.
This study aims to reflect the origin and the meaning of open education and to derive pedagogical principles for open mathematics education. Open education originates from Socrates who was the founder of discovery learning and has been developed by Locke, Rousseau, Froebel, Montessori, Dewey, Piaget, and so on. Thus open education is based on Humanism and Piaget's psychology. The aim of open education consists in developing potentials of children. The characteristics of open education can be summarized as follows: open curriculum, individualized instruction, diverse group organization and various instruction models, rich educational environment, and cooperative interaction based on open human relations. After considering the aims and the characteristics of open education, this study tries to suggest the aims and the directions for open mathematics education according to the philosophy of open education. The aim of open mathematics education is to develop mathematical potentials of children and to foster their mathematical appreciative view. In order to realize the aim, this study suggests five pedagogical principles. Firstly, the mathematical knowledge of children should be integrated by structurizing. Secondly, exploration activities for all kinds of real and concrete situations should be starting points of mathematics learning for the children. Thirdly, open-ended problem approach can facilitate children's diverse ways of thinking. Fourthly, the mathematics educators should emphasize the social interaction through small-group cooperation. Finally, rich educational environment should be provided by offering concrete and diverse material. In order to make open mathematics education effective, some considerations are required in terms of open mathematics curriculum, integrated construction of textbooks, autonomy of teachers and inquiry into children's mathematical capability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.