• Title/Summary/Keyword: mathematical terms

Search Result 1,571, Processing Time 0.023 seconds

A Comparative Study of School Mathematics Terminology in Korean, Chinese and Japanese (한국, 중국, 일본의 학교 수학 용어 비교 연구)

  • Park Kyung Mee
    • The Mathematical Education
    • /
    • v.43 no.4
    • /
    • pp.337-347
    • /
    • 2004
  • Korea and China have maintained close relationships since the ancient times along with Japan, which also shares the common Chinese culture. The three major players in Northeast Asia have been recognizing their increasing importance in politics, economy, society, and culture. Considering those relationships among the three countries, it's necessary to compare and investigate their mathematics terminology. The purpose of this study is to investigate the similarities and differences between the terminology of school mathematics in Korean, Chinese and Japanese. The mathematics terms included in the junior high school of Korea were selected, and the corresponding terms in Chinese and Japanese were identified. Among 133 Korean terms, 72 were shared by three countries, 9 Korean terms were common with China, and the remaining 52 Korean terms were the same as Japanese terms. Korea had more common terms with Japan than China, which can be explained by the influences of the Japanese education during its rule of Korea in the past. The survey with 14 terms which show the discrepancy among 3 countries were conducted for in-service teachers and pre-service teachers. According to the result of the survey, preferred mathematics terms are different from one group to the other, yet the Korean mathematics terms were more preferred in general. However some terms in Chinese and Japanese were favored in certain degree. This result may provide meaningful implications to revise the school mathematics terms in the future.

  • PDF

Meaning and Structure of Understanding in Mathematics Education (수학 교육에서 '이해'의 의미와 구조에 대한 고찰)

  • 정인철
    • The Mathematical Education
    • /
    • v.42 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • One of the terms that are most often used in mathematics classrooms by either teachers or students might be about 'understanding' of mathematical concepts. Although 'understanding' in mathematics teaching and learning has been highly emphasized by many people, there is no exact and undebatable definition of 'understanding' as of yet. This paper tries to contribute to unfolding the meaning and the structure of understanding in mathematics education along with various literature and finally enhance our understanding of 'understanding' in mathematics education.

  • PDF

An analysis of the algorithm efficiency of conceptual thinking in the divisibility unit of elementary school (초등학교 가분성(divisibility) 단원에서 개념적 사고의 알고리즘 효율성 분석 연구)

  • Choi, Keunbae
    • The Mathematical Education
    • /
    • v.58 no.2
    • /
    • pp.319-335
    • /
    • 2019
  • In this paper, we examine the effectiveness of calculation according to automation, which is one of Computational Thinking, by coding the conceptual process into Python language, focusing on the concept of divisibility in elementary school textbooks. The educational implications of these considerations are as follows. First, it is possible to make a field of learning that can revise the new mathematical concept through the opportunity to reinterpret the Conceptual Thinking learned in school mathematics from the perspective of Computational Thinking. Second, from the analysis of college students, it can be seen that many students do not have mathematical concepts in terms of efficiency of computation related to the divisibility. This phenomenon is a characteristic of the mathematics curriculum that emphasizes concepts. Therefore, it is necessary to study new mathematical concepts when considering the aspect of utilization. Third, all algorithms related to the concept of divisibility covered in elementary mathematics textbooks can be found to contain the notion of iteration in terms of automation, but little recursive activity can be found. Considering that recursive thinking is frequently used with repetitive thinking in terms of automation (in Computational Thinking), it is necessary to consider low level recursive activities at elementary school. Finally, it is necessary to think about mathematical Conceptual Thinking from the point of view of Computational Thinking, and conversely, to extract mathematical concepts from computer science's Computational Thinking.

GRADED PRIMITIVE AND INC-EXTENSIONS

  • Hamdi, Haleh;Sahandi, Parviz
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.397-408
    • /
    • 2018
  • It is well-known that quasi-$Pr{\ddot{u}}fer$ domains are characterized as those domains D, such that every extension of D inside its quotient field is a primitive extension and that primitive extensions are characterized in terms of INC-extensions. Let $R={\bigoplus}_{{\alpha}{{\in}}{\Gamma}}$ $R_{\alpha}$ be a graded integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$ and ${\star}$ be a semistar operation on R. The main purpose of this paper is to give new characterizations of gr-${\star}$-quasi-$Pr{\ddot{u}}fer$ domains in terms of graded primitive and INC-extensions. Applications include new characterizations of UMt-domains.

COLLECTIVE BEHAVIORS OF SECOND-ORDER NONLINEAR CONSENSUS MODELS WITH A BONDING FORCE

  • Hyunjin Ahn;Junhyeok Byeon;Seung-Yeal Ha;Jaeyoung Yoon
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.565-602
    • /
    • 2024
  • We study the collective behaviors of two second-order nonlinear consensus models with a bonding force, namely the Kuramoto model and the Cucker-Smale model with inter-particle bonding force. The proposed models contain feedback control terms which induce collision avoidance and emergent consensus dynamics in a suitable framework. Through the cooperative interplays between feedback controls, initial state configuration tends to an ordered configuration asymptotically under suitable frameworks which are formulated in terms of system parameters and initial configurations. For a two-particle system on the real line, we show that the relative state tends to the preassigned value asymptotically, and we also provide several numerical examples to analyze the possible nonlinear dynamics of the proposed models, and compare them with analytical results.

CRITERIA FOR A NEW CPNTEPT OF STABILITY

  • Lakshmikanthan, V.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.657-664
    • /
    • 2000
  • A new concept of stability that includes Lyapunov and orbital stabilities and leads to concepts in between them is discussed in terms of a given topology of the function space. The criteria for such new concepts to hold are investigted employing suitably Lyapunov-like functions and the comparison principle.

  • PDF