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PETTIS INTEGRABILITY IN TERMS OF OPERATORS
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ABSTRACT. A weakly measurable function f : © — X is said to be determined by
an operator Ty defined hy Ty(2*) = 2*f if for each 2* € X*,z*f € L;(A) and
Ty : X* — Li(A).

For a given Dunford integrable function f : Q@ — X* with an additive indefinite
integral we show that f is Pettis integral if and only if Ty : X** — L;(A) is a weakly

compact operator iff T/(I\'(F, €) N X) is weakly dense in Ty (K (F,¢)) for each finite
set ' C X* and each ¢.

1. Introduction

Since the invention of the Pettis integral the problem of recognizing the Pettis
integrability of a function against an individual condition has been much studied
(7}, 18], [9), [13].

In spite of the R.F. Geitz (1982) and M. Talagrand’s (1984) characterization of
Pettis integrability, there is often trouble in recognizing when a function is or is
not Pettis integrable.

Suppose that X is a Banach space with continuous dual X* and (2,X, ) is
a finite measure space. Given any Dunford integrable function f : Q@ — X, Ty
always denotes the operator Ty : X* — Li(A),z* — z*f.

Recently, in a series of papers, (2], [4] and [10] Bator, Huff, Lewis and Race
effectively used properties of the operator Ty to determine Pettis integrability.

In this paper we are going to show the Pettis integrability of the Dunford
integrable function f :  — X™* by the operator Tf : X** — Li(A),&** — ™ f.
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And for a bounded and weakly measurable function f : @ — X* we further
characterize Pettis integrability in terms of the operator Ty.

2. Definitions and Preliminaries

We present some necessary notations and terminology which are needed in our
subsequent section. Insofar as possible, we adopt the definitions and notations of
[5] and [6].

The triple (©2,3,) will always be a finite measure space. Throughout this
paper X and Y are real Banach spaces with duals X* and Y* | respectively. By
an operator T from X to Y we shall mean a continuous linear transformation
T : X — Y, the adjoint of T will be denoted by T* and by the unit bhall, By
(respectively Bx-), of X (resp. X*), we will mean the closed unit hall.

DEFINITION 2-1. A function f: Q — X is called simple if there exist the z!s
in X and the Es in ¥ such that

n
f= inXE,-v
i=1

where g (w) =1 ifw € E; and xp (w) =0 ifw ¢ E;. A function f: Q — X is
called countably valued if it can be represented in the form

00
f= Z TiXE;
=1

where the s are distinct elements in X and the E!s are disjoint elements in X.
A function f : Q — X is called strongly measurable if there exists a sequence ( fy)
of simple functions with lim, || fo(t) — f(t)|| = 0 for almost all t in Q). A function
f:Q — X is called weakly measurable if for all z* in X* the scalar-valued z* f is
measurable. A function f : Q — X* is called weak* measurable if for each x in X
v f is measurable. Let f.g : Q@ — X be two weakly measurable functions. They
are said to be weakly equivalent if for all * € X* z* f = ©*¢ almost everywhere.

While we can see that if X has a weak* seprarable dual space and f:Q — X
is weakly measurable then f is weakly equivalent to a strongly measurable if and
only if f is strongly measurable, we note that even though the function is not
weakly equivalent to a strongly measurable function, it does have one of the desired
properties of a strongly measurable function, namely that there is one sequence
(frn) of simple functions such that for all linear functionals z*,z*f = lim, z* f,..
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DEFINITION 2-2. A strongly measurable function f : @ — X is called Bochner

integrable if there exists a sequence (f,) of simple functions such that

im [ 1 = fldx =0

In this case, we define the integral of f over any set E in ¥ by the equation
/ fdx =lim | f,d).
JE n JE

The function v : ¥ — X, E — ['F fdX is the indefinite integral of f.

PROPOSTION. A strongly measurable function f : Q@ — X is Bochner inte-
grable if and only if [, | flld\ < oo.

The proposition described above is a concise characterization of Bochner inte-
grable functions, and it shows that the Bochner integral is a straightforward ab-
straction of the Lebesgue integral. We now list further basic properties of Bochner
integrable functions, some which will be need later. The proofs of these properties
can be found in [5].

PROPOSTION 2-4. If f: Q@ — X is a Bochner integrable function, then

(a) The vector measure F(: ¥ — X) defined by F(E) = [, fd\ is A-continuous,
that is, lim)\(E)_.O F(E) =0.

(b) || [ fAN < [5lIflldN, forall Ees.

(c) The vector measure F' : & — X in (a) is countably additive in norm topology
of X.

(d) The vector measure F in (a) is of bounded variation and \FI(E) = [ I flldA
for all E € ¥.

The next Proposition exhibits a strong property of Bochner integration that
has no analogue in the theory of Lebesgue integration.

PROPOSITION 2-5. (Hille) [5]. Let T be a closed linear operator defined inside
X and having values in a Banach space Y. If f and T f are Bochner integrable
with respect to A, then T(_fE fd\) = fE Tfd\ for all E € &. If the domain of T is
X, then T is a bounded operator.

A theory of integration similar to the Bochner integral is impossible for weakly
measurable functions which are not strongly measurable. Moreover, it is impossible
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to use the Bochner integral theory directly to integrate a function f if I 7]l is not
integrable. Nevertheless, there are rather simple methods available to integrate
some such functions.

The Lemma below provides the basis for integrating weakly measurable func-
tions in general.

LEMMA 2-6. Suppose f : @ — X is weakly measurable and z* f € Li()\) for all

t* € X*. Then for each E € ¥ there exists an element 3 € X** such that

oy (z*) = / t* fd) for all z* € X*.
JE

Proof Define T : X* — Li()\) by T(z*) = z*(fx;). Then T is closed. In-
deed, if lim, z* = z* and lim, T(x},) = g exist in Li(}), then some subsequence
(171,(f\s)) = (T(z},)) tends to almost everywhere to g. But lim, 23 (f\;) =
z*(fxg ), a.e. Hence z*f =g, ae. and T isa closed linear operator. An appeal
to Banach’s closed graph theorem shows that T is continuous. Hence

le*(Hlly < NTEHI < NTH 2"

Since the operation of integration over E is a continuous linear functional of
norm at most 1, it follows that

[ w*fdA‘ < Tl
JE

Hence the mapping =* — fE z* fd) defines a continuous linear functional on X*
and, as such, defines a member 23 of X**. With the help of the preceding results
the Dunford integral can be defined very simply.

DEFINITION 2-7. A weakly measurable function f : @ — X is said to Dunford

integrable if z*f € Ly()\) for all x* € X*. In this case, the Dunford integral of f
over E € § is defined to be equal to the = in the previous Proposition 2-6,and
we write o = (D) — [ fd\.

In the case that (D) — [, fdX is a member of X for all E € T, f is called Pettis
integrable and we write (P) — [ fd\ instead of (D) — [g fdX.
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In the case that (D) — fE fdXis amember of X forall E € T, f is called Pettis
integrable and we write ( f[‘ fdX\ instead of (D) — [E fdA.

The function v : ¥ X’*" E +— [ fdXis called the indefinite integral of f.

And a subset K of Li(A) is called uniformly integrable if limyg)—o fE fdA =0
uniformly for each f € K.

EXAMPLE 2-8. A Dunford integrable function which is not Pettis integrable.
Define f : [0,1] — Cy by the equation

f(t) = (77‘ ) \‘(0‘1/::](7‘))
= (a1 (12X 00721 s nXoa/m)(t)s - 0)

for t € [0,1].
If 2* = (Q’n) = (als(YZs' RN £ ) € '5‘ = ll then ‘T‘*f = Z:ozj ﬂ””’Y(O,]/n]»
a function which is certainly Lebesgue integrable. However, if A is the Lebesgue

measure on [0, 1], then
" fd)\ = Gn
'[0111 n§=:l

and the mapping z* = (an) — Y oo, @n is a linear functional on /; corresponding
to (1,1,--+,1,-++) € log \ Co. Hence, (D)—f(o’l} fdd=(1,1,---,1,--+) € lc\Co,
so f is a Dunford integrable function that is not Pettis integrable.

The above example shows that the indefinite Dunford integral need not be

countably additive. The following Lemma tells us exactly when countable addi-
tivity holds.

LEMMA 2-9. [10] Let f : @ — X be Dunford integrable and let T be the
operator T : X* — Li(A),z* = z*f. The following statements are equivalent:
(a) T is weakly compact.
(b) {a*f : * € Bx-} is uniformly integrable.
(c) The indefinite integral of f is countably additive.

Condition (b) of the above Lemma is clearly satisfied when the function f
satisfies the following condition: There exists a constant M such that for each =*
in Bx«, |z*f| < M almost everywhere.
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DEFINITION 2-10. Let f : Q@ — X be weakly measurable. It is said to be
weakly bounded if there exists a constant M such that for all z* € X* |e*f| <
M||z*|| a.e. And we say that a function f : @ — X is weak™ equivalent to a
function ¢ : @ — X** if for all z* € X* z*f(-) = ¢(-)z* a.e.

By the above definitions we note that if f : @ — X is weakly measurable, weakly
bounded, and weak* equivalent to a strongly measurable function ¢g : € — X™**|
then ¢g 1s bounded off a set of measure zero.

If X is a locally convex space, the weak topology on X, denoted by o(X, X*), is
the topology defined by the family of seminorms { P, : ¢* € X*}, where P,.(z) =
| < @,2* > |. The weak* topology on X*, denoted by o(X™*, X), is the topology
defined by the family of seminorms {P; : ¢ € X}, where Py(z*) = | < a*, 2 > |.

We say that f is scalar measurable with respect to A if z*f is A-measurable
for z* € X*, and say that f belongs to weak - L;(A, X) if z*f € Ly(A) for all
e X*.

If f € weak- Li(A X), then we define the operator Ty : X* — L;()\) by
Tf(z*) = 2*f, and we say that f is a A-Pettis integrable if T} maps Lo(A) into
the canonical image of X in X™**.

DEFINITION 2-11. An operator T': X* — Y is said to be (w*, w)-continuous

provided that (T(z%)) converges to T(z*) in the weak topology of Y whenever
(%) is a net which converges to z* in the weak* topology of X*.

If F'is a finite subset in X and € > 0, set
K(Fie)={z* e X" :||z*||<land z"(z) <€ forall «in F}.

Then K{(F,¢) is convex and weak* compact for all finite F in X and € > 0. So
TK(F,¢) is a closed and convex subset of L;()) for all K(F,e).

DEFINITION 2-12. If X and Y are Banach spaces and T : X — Y is a linear
transformation, then T is compact if the closure of T(By) is compact in Y. And

an operator T in B(X,Y) is weakly compact operator if the closure of T(By) is
weakly compact.

It is easy to see that compact operators are bounded. For operators on Hilbert
space, we note that the following concept is equivalent to compactness: If X and
Y are Banach spaces and T € 3(X,Y), then T is completely continuous if for any
sequence (z,) in X such that z, — z weakly it follows that ||Tz, — Tz|| — 0.
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We state a following result in [10] which effectively used the operator T to
determine Pettis integrability.

LEMMA 2-13. A Dunford integrable function f is Pettis integrable if and only
if the operator T is weak™-to-weak continuous. Moreover, if f is Pettis integrable,
then T is necessarily a weakly compact operator.

The following Proposition further characterizes Pettis integrability in terms of
the operator T.

PROPOSITION 2-14. [10] If f : Q@ — X is Dunford integrable, then the fol-
lowing statements are equivalent:

(a) f is Pettis integrable.

(b) T is weakly compact and N{T(K(F,¢)) : F C X, F finite, and € > 0} =

{0}.

Proof (a) = (b). If f is Pettis integrable, T' is weakly compact by Lemma 2-13.
Suppose g is in N{T(K(F,e) : F C X, F finite, and € > 0}. For each (F,¢) choose
z(p ) in K(F €) such that g = T(z(p ) But (2(F))(F,e is naturally a net in X*
which converges weak* to zero. Hence, g = T(a:z‘F,()) — 0.

(b) = (a) Let Bx« = {z*: ||z*|| < 1}. Suppose a net (z}) in 2Bx- converges
to z*. Then (z* —z}) is a net in Bx- and for all (F\¢) it is eventually in K(F,e).
Let g be any weak cluster point of (T(z* — z%)). Then g € N{T(K(F,¢)) : F C
X, F finite, and € > 0}, so g is equal to zero. Thus T'(z%) — T(z*) weakly in
Li(X). It follows that T is (w*,w)-continuous.

3. The Main Results
Let X be a Banach space with dual X* and (@, £, A) be a finite measure space.

DEFINITION 3-1. If f : Q — X* is bounded and weakly measurable, i.e., if
z** f is measurable for every z** € X**, then it can easily be shown that
(i) for every E € %, there exists X} € X* such that, for all z € X,

x’};(x):/Emfd/\

and (ii) for every E € T, there exists rp* € X*** such that, for all 2** € X**,

TP (™) = / ™ f d).

L2 +
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The element z3, is called the weak* (or  Gel'fand) integral of f over E,
denoted by (w*) — fE fdX, and 23 is called the Dun ford integral of f over E,
denoted by (D) - [E fdA. By Deﬁmtion 2-7, f is Pettis integrable if and only if

*n(_ fEf d/\) e X*.

A Banach space Y is said to have the A— Pettis Integral Property (or A — PIP)
if every bounded weakly measurable function f : € — Y is Pettis integrable.
Clearly, we see that X* has the A-PIP if and only if for every f : @ — X* that
is bounded and weakly measurable, (w*) — fE fdx = (D) — -[E fdX\ for every
E € ¥. The following Lemma is essentially a reformation of the definition of Pettis
integral.

LEMMA 3-2. Let f : Q@ — X* be Dunford integrable and Ty : X** — L(\)
be operator defined by =** — a**f. Then f is Pettis integrable if and only if
Ty : X** — Ly(A) is (w*, w)-continuous.

Proof For z, € (L1(A))* = Loo(A),

2 (2™ = /E:z:**fd)\ —< Ty(a™) 2, > .

If Ty : X** — Li()) is (w*, w)-continuous, then z3™ defined by z7*(z**) =
Ts(z**),z, > is weak*-continuous functional. Hence ep* € X* and f is Petms
integrable.

Conversely, if f is Pettis integrable, then for subset S of all simple functions in

dual Leo(A) of Li(A), T7(S) C X*. Hence T7(Lo(A)) C X*. Therefore Ty is

(w*, w)-continuous.

Suppose that X is a Banach space, F is a finite subset of X* and € > 0. We
again define K(Fe¢) by

K(Fe)={z* e X*:||2*]| <1 and z**(vr) <e foreach z" € F}
= {z** € Bx« :| ™ (2*)|< e foreach =€ F}.

THEOREM 3-3. If f : Q — X* is Dunford integrable, the followings are equiv-
alent:
(a) f is Pettis integrable.
(b) Ty : X** — Lyi(A) is a weakly compact operator, Tf(K(F,¢) is closed for
all (F,€) and N(p Ts(K(F,¢€)) = {0}.
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Proof (a) = (b) If f is Pettis integrable, then by Lemma 3-2 Tf is a weakly
compact operator. Suppose that g is in Mg\ Tp(IK(F,¢€)). Let T(F y € K(Fle)
so that T(x7%,)) = g for each (F,¢). But (2{F ) forms a net in the obvious
ordering, and certainly it converges weak* to zero. Since T is (w*, w)-continuous,
Ty(xy F())-—w—+0 and thus g = 0.

(b) => (a) Suppose that a net (z3*) in $Bx.. converges weak* to **. Then

3t —x** is in Bx-- for each «, and (1 e~ a™)4 is eventually in K(F, e) for each

pair (Fe).

Now Ty(zg* — 2**)a € Ty(Bx--), a relatively weakly compact subset of Li(A).
Suppose that y is a weak cluster point of Ty(a%* — 2**). Therefore y € w-
closure (T (IX(F,¢€))). But T(I(F.€)) is convex and norm closed. Consequently,
y € Tf(K(F\¢)) for each pair (F,€). Thus y = 0 and net Ty(2%*) converges weakly
to Ts(x**). Therefore Ty is (w*, w)-continuous and f is Pettis integrable.

PROPOSITION 3-4. An operator T : X — Y is weakly compact if and only if
its adjoint T* : Y* — X* is (w*,w)- continuous.

Proof Let T* :Y* — X* be a (w*, w)-continuous, and let z3* € X**. Then if
yay — y*y for each y € Y, then

o T (u2) = T (a5 s — T (23"

Thus  T*(z3*) in  Y** is a weak® continuous functional on Y*. Hence
T*(23*) € Y, so T**(X**) C Y. Therefore T is a weakly compact operator.

Conversely, if T is a weakly compact operator, for each z** in X**, there is y in
Y with T**(X**) C Y such that 2**T*(y*) = T**(2**)y* = y*y for all y* € Y*.
Thus if (y; ) converges with weak* to y*, then (T*(y%)) converges weakly to T*(y*)
in X*. Hence T* is (w*, w)-continuous.
THEOREM 3-5. Let f : @ — X* be Dunford integrable and let Tf : X** —
Li(X) and let Tf = Tf|X. Then f is Pettis integrable if and only if Ty = T
Proof If f is Pettis integrable, then Ty is (w*, w)-continuous by Lemma 3-2. Let

z** be in Bx--. Since By is o(X**, X*) dense in Bx-., we can choose a net (4)
from By such that (z,) converges weak* to z**. Then

Ti(zo) = Ti(za) = T3 (za)
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for each a. Moreover, by hypothesis (Ty(x4)) converges weakly to Ty(a**),
and since the operator T7* is (w”,w)-continuous, (T}‘*(ma)) converges weakly to

T}‘*(z**). Therefore f‘f**(z**) = T¢(x**), and so Ty = f}‘*

_ Conversely, suppose that Ty = T}** Then f’;*(x**) = Typ(z**) C Li(X), since
T¢* : X** — Li()) is a weakly compact operator. Thus Ty is a weakly compact
operator. Hence T}"‘ : X** — Ly(A) is (w*,w)-continuous. Consequently, by
hypothesis Ty is (w*, w)-continuous, and so f is Pettis integrable.

Before proceeding to next characterization of (w*, w)-continuity, we remark the
following Lemma which has been proved in [4].

LEMMA 3-6. If F is a finite subset of X* and ¢ > 0, then K(F,e) N X s
weak*-dense in K'(F¢).

THEOREM 3.7. Let f: Q — X* be Dunford integrable and Ty : X** — L;(})
be weakly compact operator defined by T¢(z**) = «** f. Then f is Pettis integrable

iff T{(K(F,€) N X) is weakly dense in Tf(K(F,e)) for each finite set F C X* and
each € > 0.

Proof Suppose that Tf(Ix(F )N X) is weakly dense in T¢(K(F,¢€)) for each
pair (F,e€). Since T;"‘ is (w*, w)-continuous, Tf(I\.(F €) N X) is norm dense in
Tf(K(F,¢)) for each pair (Fe). Since T}* is (w*,w)-continuous, T**(A(F, €))
is closed and thus Ty(K(F,¢)) C T7*(K(F,¢)). Hence N(poTr(K(F,€)) = {0}.
Therefore f is Pettis integrable by Theorem 3-3.

Conversely, suppose that f is Pettis integrable, then Ty is (w*, w)-continuous.
Let z** € K(F,¢) and let (x4) be a net from K(F,e¢) N X so that z, converges

weak® to z**. Then Tj(zo) converges weakly to Ty(z**), and Ty(zq) = Tf(za)
for each a.

[t is known that if f: Q — X* is bounded and weakly measurable, then f is
wealk*-integrable and Dunford integrable.

THEOREM 3.8. A subset K of Ly(\) is relatively weakly compact iff it is
bounded and uniformly integrable.

Proof Suppose that I is bounded and uniformly integrable. Let (f,) be a
sequence in K. Then there is a countable field F such that each f, is measurable
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relative to the o-field ¥, generated by F. By Cantor diagonalization, select a
subsequence ( f,; ) such that for vector measure F': £; — X,

M?L@a=mm

exists for all E € F. Also, since K is uniformly integrable, it follows that F is
A-continuous. Thus there exists f € L;(Z;, A) such that

lim / fn;d\ = / f dX
i JE JE

for each E € £. From this point, it is a simple argument to verify that

lim/f,,_).g d\ = /fd)\
7 Ja JQ

for each ¢ € Li(X;,)). Hence (fn;) converges weakly to f in L;(Z;,A). But
Li(%, \) is a closed linear subspace of Li(\). Hence (f,) converges weakly to f
in Ly(A) and K is relatively weakly compact.

Conversely, let K C L;1()) be relatively weakly compact. Then K is bounded
and if (fn) is a sequence in K, then (f,) has a weakly convergent subsequence by
Eberlein’s Theorem. Hence there is a subsequence (fy;) such that

hm/hﬁA
J JE

exists for all E € ¥. By Vitali-Hahn-Saks Theorem, (f,) is uniformly integrable.
Hence every sequence in K has a uniformly integrable subsequence. Consequently,
K is uniformly integrable.

THEOREM 3-9. Let f: Q — X* be a bounded weakly measurable funciion and
Ty : X*™ — Li(X) be an operator defined by «** — z**f and Ty =Ty | X.
If there exist a net (z4) in X such that (Tf(zq)) converges weakly to Ty(z**)

and (z,) converges weak* to z**, for each element =** in Bx-.-, then f 1s Pettis
integrable.

Proof Since f is bounded, we can assume that f : @ — By- and operator T
defined by z** — «** f is well defined. Since for z** in Bx--

IT5 (=) = / |2 f | d) < || FlleoA(X),
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*

in By--

[1amrian= [ 1ftax

T¢(Bx--) is uniformly integrable. By above Theorem 3-8, Ty(Bx--) is weakly
compact set. Hence Ty is a weakly compact operator. Since Ty : X** — Ly(}) is

T¢(Bx--) is norm bounded and since for a*

weakly compact operator, Ty is a weakly compact operator and T7*(z**) C L1(A).

Thus T}* is (w*, w)-continuous.

Let z** € Bx--. By hypothesis, if we choose a net (24) in By such that (z4)
converges weak* to ** and (Tf(xq)) converges weakly to Ty(a**). then Typ(xy) =
Tf(za) = Tf*(xqa) for each a. Furthermore, by Theorem 3-5 (T}*(x4)) converges

to ff’f*(m**). Hence f}‘*(;r**) = Ty(a**) and f}"* = Ty, 50 Ty is (w*, w)-continuous.
Therefore f is Pettis integrable.
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