• Title/Summary/Keyword: mathematical model development

Search Result 765, Processing Time 0.038 seconds

Development of Education and Training System for the Auto-Reclosing of Power Transmission System Using a Real Time Digital Simulator (실시간 계통시뮬레이터를 이용한 송전계통 자동재폐로 교육 및 훈련 시스템 개발)

  • Park, Jong-Chan;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • This paper summarizes an education and training system for the auto-reclosing of power transmission system using a real time digital simulator. The system is developed to understand the principle of reclosing and the sequence of automatic reclosing schemes, and practice the effects of reclosing actions to power system in real-time simulator. This study is concentrated into the following two parts. One is the development of real time education and training system of automatic reclosing schemes. For this, we use the RTDS(real time digital simulator) and the actual digital protective relay. The mathematical relay model of RTDS and the actual distance relay which is equipped automatic reclosing function are also used. The other is the user friendly interface between trainee and trainer. The various interface displays are used for user handing and result display. The conditions of automatic reclosing which is a number of reclosing, reclosing dead time, reset time, and so on, can be changed by the user interface panel. A number of scenario cases are reserved for the education and training. Through the test, we verified that the proposed system can be effectively used to accomplish the education and training of automatic reclosing.

The Program Development with Curve of Constant Width for the Math-Gifted in Elementary school (정폭도형을 활용한 초등수학영재 프로그램 개발 및 적용 결과 분석 연구)

  • Baek, Kyung Hwa;Cho, Youngmi
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.1
    • /
    • pp.201-217
    • /
    • 2013
  • This study intends to develop and apply elementary mathematics program for gifted students based on a 'constant width shape' in order to keep pace with the STEAM education which is becoming the main issue and therefore, it set up research subject as follows; To introduce constant width shapes through 'a circle' which is a constant width shape under present education process and based on this, to search a theory about constant width shapes and reuleaux triangles. To arrange an elementary mathematics program for gifted students according to the part 3 enrichment study model of Renzulli. To revise supplement the program on the basis of field application result twice and then to materialize the program. It is expected that the developed program and study data will suggest mathematical ideas and direction of materials development in education sites of elementary mathematics program for gifted students.

  • PDF

Development of Predictive Mathematical Model for the Growth Kinetics of Staphylococcus aureus by Response Surface Model

  • Seo, Kyo-Young;Heo, Sun-Kyung;Lee, Chan;Chung, Duck-Hwa;Kim, Min-Gon;Lee, Kyu-Ho;Kim, Keun-Sung;Bahk, Gyung-Jin;Bae, Dong-Ho;Kim, Kwang-Yup;Kim, Cheorl-Ho;Ha, Sang-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1437-1444
    • /
    • 2007
  • A response surface model was developed for predicting the growth rates of Staphylococcus aureus in tryptic soy broth (TSB) medium as a function of combined effects of temperature, pH, and NaCl. The TSB containing six different concentrations of NaCl (0, 2, 4, 6, 8, and 10%) was adjusted to an initial of six different pH levels (pH 4, 5, 6, 7, 8, 9, and 10) and incubated at 10, 20, 30, and $40^{\circ}C$. In all experimental variables, the primary growth curves were well ($r^2=0.9000$ to 0.9975) fitted to a Gompertz equation to obtain growth rates. The secondary response surface model for natural logarithm transformations of growth rates as a function of combined effects of temperature, pH, and NaCl was obtained by SAS's general linear analysis. The predicted growth rates of the S. aureus were generally decreased by basic (pH 9-10) or acidic (pH 5-6) conditions and higher NaCl concentrations. The response surface model was identified as an appropriate secondary model for growth rates on the basis of correlation coefficient (r=0.9703), determination coefficient ($r^2=0.9415$), mean square error (MSE=0.0185), bias factor ($B_f=1.0216$), and accuracy factor ($A_f=1.2583$). Therefore, the developed secondary model proved reliable for predictions of the combined effect of temperature, NaCl, and pH on growth rates for S. aureus in TSB medium.

Development of Mathematics Class Model in Gifted Science Academy (과학영재학교 수학 수업모형 개발)

  • Oh, Taek-Keun
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.4
    • /
    • pp.657-677
    • /
    • 2014
  • Considering the expansion of gifted education and the quantitative increase the Gifted Science Academy, it is important to seek the appropriate methods of mathematics teaching for gifted high school students. In particular, to reflect current trends in mathematics education that the mathematical creativity is being presented as an important educational goal, Now is the time we need student-centered discussion model for regular mathematics classes, not teacher-centered instruction in the way of knowledge transfer. In this study, class model of preparation-based discussion was designed and applied to the regular mathematics classes for the Science Academy. Students participating in this research had a lot of pressure in preparation activities for discussion, but they said that the discussion compared to traditional lecture was mathematically meaningful experience. These findings suggest the implication that class model of preparation-based discussion can be meaningfully applied to the regular mathematics class.

A Study on the Development of Programming Education Model Applying English Subject in Elementary School (초등학교 영어교과를 적용한 프로그래밍 교육 모델 개발)

  • Heo, Miyun;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.5
    • /
    • pp.497-507
    • /
    • 2017
  • Research on software education and linking and convergence of other subjects has been mainly focused on mathematics and science subjects. The dissatisfaction of various preferences and types of learning personality cause to learning gap. In addition, it is not desirable considering the solution of various fusion problems that can apply the computational thinking. In this way, it is possible to embrace the diverse tendencies and preferences of students through the linkage with the English subject, which is a linguistic approach that deviates from the existing mathematical and scientific approach. By combining similarities in the process of learning a new language of English education and software education. For this purpose, based on the analysis of teaching - learning model of elementary English subject and software education, we developed a class model by modifying existing English subject and software teaching - learning model to be suitable for linkage. Then, the learning elements applicable to software education were extracted from the contents of elementary school English curriculum, and a program applied to the developed classroom model was designed and the practical application method of learning was searched.

Specification and Simulation Environment for Prototying the Object Model (객체 모델의 프로토파이핑을 위한 명세 및 시물레이션 환경)

  • Jung, Lan;Kim, Jung-A;Moon, Chung-Ryeal;Kim, Jung-Doo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1243-1256
    • /
    • 1997
  • Object modeling has been cinsidered as an efficient technique for eleciting user requirements and communicat-ing between developers and customers. But model itself is not easy to understand what recult will be after coding and whether it will be meet with the requirements of customers. In this paper, we developed the envuroment for visualization of object model for validating with rewuirnent at the early stage. Therefore, we defined correct and complete rules which can transform the object model.the delierables of Shler/Mellor's method, into a for-mal specification language of VDM(Vienna Development Methods) with a mathematical basis. This basis provides the means of proving that a specification is realizable and proving properties of a system.Therefore.the completeness, preciceness of object model can be verified by proving the transformed VDM specification and prototyping by constructing a visualization supporting enviroment.

  • PDF

Development and Application of Statistical Programs Based on Data and Artificial Intelligence Prediction Model to Improve Statistical Literacy of Elementary School Students (초등학생의 통계적 소양 신장을 위한 데이터와 인공지능 예측모델 기반의 통계프로그램 개발 및 적용)

  • Kim, Yunha;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.717-736
    • /
    • 2023
  • The purpose of this study is to develop a statistical program using data and artificial intelligence prediction models and apply it to one class in the sixth grade of elementary school to see if it is effective in improving students' statistical literacy. Based on the analysis of problems in today's elementary school statistical education, a total of 15 sessions of the program was developed to encourage elementary students to experience the entire process of statistical problem solving and to make correct predictions by incorporating data, the core in the era of the Fourth Industrial Revolution into AI education. The biggest features of this program are the recognition of the importance of data, which are the key elements of artificial intelligence education, and the collection and analysis activities that take into account context using real-life data provided by public data platforms. In addition, since it consists of activities to predict the future based on data by using engineering tools such as entry and easy statistics, and creating an artificial intelligence prediction model, it is composed of a program focused on the ability to develop communication skills, information processing capabilities, and critical thinking skills. As a result of applying this program, not only did the program positively affect the statistical literacy of elementary school students, but we also observed students' interest, critical inquiry, and mathematical communication in the entire process of statistical problem solving.

The Development of a chapter of middle school mathematics textbook according to the learners' self-directed learning model (자기 주도적 학습 지원 모형에 따른 중학교 수학 교과서 시범 단원 개발)

  • Hwang, Hye Jeang;Cho, Wan Young;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.31 no.3
    • /
    • pp.331-347
    • /
    • 2017
  • The purpose of this study is to develop a sample chapter of mathematics textbook at the first middle school according to the model of supporting learners' self-directed learning. The self-directed learning is a learning strategy to develop learner's ability to solve unstructured problems by himself or herself. Basically, the textbook should included learning objectives distinctively. Second textbook should consist of some appropriate method for learners to learn content. Third, it suggests some plans to utilize learning strategies of this model effectively when authors or developers develop textbooks in future. Based on those condition, it is also requested that the sample chapter of the textbook be develop in order to study interestingly as well as to implement self-directed study, and content materials using mixed diverse subjects would be included in the chapter. Furthermore, the sample chapter which is suitable to the semester of managing self-directed learning middle school would be developed. For this purpose, in this study the 'Plane shapes' was selected dealt with in the first middle school. The sample chapter is developed at first by the researchers and then revised and completed through the checking from the professionalists two times.

A Study of Model on the Optimal Allocation of Budget for the Efficiency of the University Evaluation (대학 평가개선을 위한 예산 최적화 배분 Model 연구)

  • Choi, Bum Soon;Lim, Wang Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.165-174
    • /
    • 2013
  • Recently, many universities in Korea have been faced with critical crisis such as the decrease in the number of freshmen, the pressure for tuition cuts, M&A between universities and so on. Nobody has expected that universities will have this kind of difficulties. The universities are making attempts to innovate the quality of education to secure high level of education and to meet social needs to overcome these internal and external environment of crisis. For this innovation, the universities have sought to reduce the budget as well as conducted the self-evaluation to figure out their relative positions annually. Innovations cannot have having the limitation without education funds. Budget spent in universities have influences directly or indirectly on the structural improvement of the finance and on the growth of universities. The purpose of this study is to explore the decision-making method to find the optimal budget allocation so as to minimize the execution budget and to maximize the management evaluation by taking the advantage to analyse the relationship between the evaluation and the budget. Therefore, in this paper, we implement the development of the mathematical model for the University Evaluation and Budget Allocation Optimization in the form of the linear programming.

Automatic scoring of mathematics descriptive assessment using random forest algorithm (랜덤 포레스트 알고리즘을 활용한 수학 서술형 자동 채점)

  • Inyong Choi;Hwa Kyung Kim;In Woo Chung;Min Ho Song
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.165-186
    • /
    • 2024
  • Despite the growing attention on artificial intelligence-based automated scoring technology as a support method for the introduction of descriptive items in school environments and large-scale assessments, there is a noticeable lack of foundational research in mathematics compared to other subjects. This study developed an automated scoring model for two descriptive items in first-year middle school mathematics using the Random Forest algorithm, evaluated its performance, and explored ways to enhance this performance. The accuracy of the final models for the two items was found to be between 0.95 to 1.00 and 0.73 to 0.89, respectively, which is relatively high compared to automated scoring models in other subjects. We discovered that the strategic selection of the number of evaluation categories, taking into account the amount of data, is crucial for the effective development and performance of automated scoring models. Additionally, text preprocessing by mathematics education experts proved effective in improving both the performance and interpretability of the automated scoring model. Selecting a vectorization method that matches the characteristics of the items and data was identified as one way to enhance model performance. Furthermore, we confirmed that oversampling is a useful method to supplement performance in situations where practical limitations hinder balanced data collection. To enhance educational utility, further research is needed on how to utilize feature importance derived from the Random Forest-based automated scoring model to generate useful information for teaching and learning, such as feedback. This study is significant as foundational research in the field of mathematics descriptive automatic scoring, and there is a need for various subsequent studies through close collaboration between AI experts and math education experts.