References
- Ahn, D., & Lee, K. H. (2022). Analysis of achievement predictive factors and predictive AI model development-Focused on blended math classes. The Mathematical Education, 61(2), 257-271. http://doi.org/10.7468/mathedu.2022.61.2.257
- Ahuja, R., Chug, A., Kohli, S., Gupta, S., & Ahuja, P. (2019). The impact of features extraction on the sentiment analysis. Procedia Computer Science, 152, 341-348. https://doi.org/10.1016/j.procs.2019.05.008
- Anyfantis, D., Karagiannopoulos, M., Kotsiantis, S., & Pintelas, P. (2007). Robustness of learning techniques in handling class noise in imbalanced datasets. In C. Boukis, A. Pnevmatikakis, & L. Polymenakos (Eds.), Artificial Intelligence and Innovations 2007: from Theory to Applications: Proceedings of the 4th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI 2007) (Vol. 4, pp. 21-28). Springer. https://doi.org/10.1007/978-0-387-74161-1_3
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Breslow, L. A., & Aha, D. W. (1997). Simplifying decision trees: A survey. The Knowledge Engineering Review, 12(1), 1-40. https://doi.org/10.1017/S0269888997000015
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953
- Chung, G., & O'Neill, H. (1997). Methodological approaches to online scoring of essays (Technical Report 461). National Center for Research on Evaluation, Student Standards, and Testing. https://cresst.org/publications/cresst-publication-2833/
- Dikli, S. (2006). An overview of automated scoring of essays. The Journal of Technology, Learning and Assessment, 5(1). https://ejournals.bc.edu/index.php/jtla/article/view/1640
- Ha, M., Lee, K., Shin, S., Lee, J., Choi, S., Joo, J., Kim, N., Lee, H., Lee, J. H., Lee, J. R., Cho, Y., Kang, K., & Park, J. (2019). Assessment as a learning tool and utilization of artificial intelligence: WA3I project case. School Science Journal, 13(3), 271-282. http://doi.org/10.15737/ssj.13.3.201908.271
- Han, K. M., & Choi-Koh, S. S. (2014). An analysis of the mathematical errors on the items of the descriptive assessment in the equation of a circle. The Mathematical Education, 53(4), 509-524. https://doi.org/10.7468/mathedu.2014.53.4.509
- He, H., & Ma, Y. (2013). Imbalanced learning: Foundations, algorithms, and applications. Wiley-IEEE Press.
- Jang, J. (2021). A study on automated english essay scoring using machine learning [Master's thesis, Seoul National University]. https://s-space.snu.ac.kr/handle/10371/176658
- Kang, O., Kwon, E., Hwang, H., Jeon, D., Noh, J., Woo, H., Yoon, S., Lee, H., Ryu, S., Yoon, H., Hong, C., & Jung, K. (2018). Middle school mathematics 1. Doosan Dong-A.
- Kil, H. H. (2018). The study of Korean stopwords list for text mining. Urimalgeul: The Korean Language and Literature (Urimalgeul), 78, 1-25. http://doi.org/10.18628/urimal.78..201809.1
- Kim, H. K., Kye, B. K., Lee, J. Y., Lim, W. C., Choi, I., & Lee, J. (2018). A study of mathematics education with intelligence information technology (Research Report BD18010003). Korea Foundation for the Advancement of Science and Creativity.
- Kim, H., & Oh, Y. (2014). The effect of essay writing-centered mathematics teaching on problem solving and mathematical disposition. Communications of Mathematical Education, 28(1), 131-154. https://doi.org/10.7468/jksmee.2014.28.1.131
- Kim, N., & Bae, J. (2006). Effect on mathematical inclination of elementary school students using the description style assessment. Journal of Elementary Mathematics Education in Korea, 10(2), 195-219.
- Kim, R. Y., & Lee, M. H. (2013). Middle school mathematics teachers' perceptions of constructed-response assessments. Journal of Educational Research in Mathematics, 23(4), 533-551.
- Lee, M. (2023, November 20). Kiwi: Korean intelligent word identifier. https://github.com/bab2min/Kiwi.
- Lee, M., & Ryu, S. (2020). Automated scoring of scientific argumentation using expert morpheme classification approaches. Journal of The Korean Association For Science Education, 40(3), 321-336. https://doi.org/10.14697/jkase.2020.40.3.321
- Lee, M., & Ryu, S. (2021). Automated scoring of argumentation levels and analysis of argumentation patterns using machine learning. Journal of The Korean Association For Science Education, 41(3), 203-220. https://doi.org/10.14697/jkase.2021.41.3.203
- Lee, S., Kim, G., Noh, S., Kim, M. K., & Kim, R. Y. (2014). Mathematics teachers' perceptions about and implementation of constructed-response assessment. Journal of the Korean School Mathematics Society, 17(2), 275-290.
- Lee, Y., & Park, K. (2022). Exploring a way to build an AI automated essay scoring model with insufficient data. Journal of Education & Culture, 28(5), 25-42. http://doi.org/10.24159/joec.2022.28.5.25
- Lee, Y., Shin, D., & Kim, H. (2022). Exploring the feasibility in applying an automated essay scoring to a writing test of Korean language. Bilingual Research, 86, 171-191. http://doi.org/10.17296/korbil.2022..86.171
- Ministry of Education (2022). Mathematics curriculum. Ministry of Education Notice 2022-33 [supplement 8].
- Ministry of Education (2023, October 10). The 2028 college entrance examination system reform proposal for preparing for the future society. Press release of MOE. https://www.moe.go.kr/boardCnts/viewRenew.do?boardID=294&boardSeq=96578&lev=0
- Na, G. S., Park, M., Park, Y., & Lee, H. C. (2018). A study on mathematical descriptive evaluation: Focusing on examining the recognition of mathematics teachers and searching for supporting way. School Mathematics, 20(4), 635-659. http://doi.org/10.29275/sm.2018.12.20.4.635
- National Council of Teachers of Mathematics (1995). Assessment standards for school mathematics. National Council of Teachers of Mathematics.
- National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.
- Noh, E., Song, M., Park, J., Kim, Y., & Lee, D. (2016). Advanced refinements and application of automated scoring system for Korean large-scale assessment (Research Report RRE 2016-11). Korea Institute Of Curriculum and Evaluation.
- Noh, S. S., Kim, M. K., Cho, S. M., Jeong, Y. S., & Jeong, Y. A. (2008). A study of teachers' perception and status about descriptive evaluation in secondary school mathematics. Journal of Korean School Mathematics Society, 11(3), 337-397.
- Oh, S. J. (2023). Analysis of the impact of mathematics education research using explainable AI. The Mathematical Education, 62(3), 435-455. https://doi.org/10.7468/mathedu.2023.62.3.435
- Oh, S. J., & Kwon, O. N. (2023). Development of an impact identification program in mathematical education research using machine learning and network. Communication of Mathematical Education, 37(1), 21-45. http://doi.org/10.7468/jksmee.2023.37.1.21
- Organisation for Economic Co-operation and Development (2023), PISA 2022 results (Volume I): The State of learning and equity in education. OECD Publishing. https://doi.org/10.1787/53f23881-en
- Park, G. R., & Pang, J. (2008). A survey on the comprehension of basic knowledge of mathematics of 6th graders in elementary school by essay test. The Mathematical Education, 47(2), 181-195.
- Park, H., Lee, M., Koo, J., Baek, E., Joo, H., Jung, J., Na, M., Ryu, K., Lee, E., Oh, S., & Lee, J. (2022). Descriptive assessment tool compilation: Middle and high school mathematics (Research Material ORM 2022-150-3). Korea Institute for Curriculum and Evaluation.
- Park, J., & Choi, S. (2023). A study on the development of automated Korean essay scoring model using random forest algorithm. Brain, Digital, & Learning, 13(2), 131-146. https://doi.org/10.31216/BDL.20230008
- Park, S., & Ha, M. (2020). The development and application of automated scoring system for constructed-response assessment of 5th grade science in elementary schools using recurrent neural network. Journal of Educational Evaluation, 33(2), 297-321. http://dx.doi.org/10.31158/JEEV.2020.33.2.297
- Pimpalkar, A. P., & Raj, R. J. R. (2020). Influence of pre-processing strategies on the performance of ML classifiers exploiting TF-IDF and BOW features. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 9(2), 49-68. https://doi.org/10.14201/ADCAIJ2020924968
- Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106. https://doi.org/10.1007/BF00116251
- Shin, D. (2022). Effects of scoring features on the accuracy of the automated scoring model of english. Korean Journal of Teacher Education, 38(6), 73-91. https://doi.org/10.14333/KJTE.2022.38.6.04
- Yoo, J. E. (2015). Random forests, an alternative data mining technique to decision tree. Journal of Educational Evaluation, 28(2), 427-448.