• 제목/요약/키워드: mathematical equation

Search Result 2,612, Processing Time 0.051 seconds

BLOW-UP RATE FOR THE SEMI-LINEAR WAVE EQUATION IN BOUNDED DOMAIN

  • Liang, Chuangchuang;Wang, Pengchao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.173-182
    • /
    • 2015
  • In this paper, the blow-up rate of $L^2$-norm for the semi-linear wave equation with a power nonlinearity is obtained in the bounded domain for any p > 1. We also get the blow-up rate of the derivative under the condition 1 < p < $1+\frac{4}{N-1}$ for $N{\geq}2$ or 1 < p < 5 for N = 1.

GLOBAL SOLUTIONS FOR A CLASS OF NONLINEAR SIXTH-ORDER WAVE EQUATION

  • Wang, Ying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1161-1178
    • /
    • 2018
  • In this paper, we consider the Cauchy problem for a class of nonlinear sixth-order wave equation. The global existence and the finite time blow-up for the problem are proved by the potential well method at both low and critical initial energy levels. Furthermore, we present some sufficient conditions on initial data such that the weak solution exists globally at supercritical initial energy level by introducing a new stable set.

THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION

  • Yun, Ki-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.427-436
    • /
    • 2001
  • It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.

  • PDF

STOCHASTIC CALCULUS FOR BANACH SPACE VALUED REGULAR STOCHASTIC PROCESSES

  • Choi, Byoung Jin;Choi, Jin Pil;Ji, Un Cig
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.45-57
    • /
    • 2011
  • We study the stochastic integral of an operator valued process against with a Banach space valued regular process. We establish the existence and uniqueness of solution of the stochastic differential equation for a Banach space valued regular process under the certain conditions. As an application of it, we study a noncommutative stochastic differential equation.

SOME NEW APPLICATIONS OF S-METRIC SPACES BY WEAKLY COMPATIBLE PAIRS WITH A LIMIT PROPERTY

  • Afra, J. Mojaradi;Sabbaghan, M.
    • The Pure and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • In this note we use a generalization of coincidence point(a property which was defined by [1] in symmetric spaces) to prove common fixed point theorem on S-metric spaces for weakly compatible maps. Also the results are used to achieve the solution of an integral equation and the bounded solution of a functional equation in dynamic programming.

POSITIVE SOLUTION AND GROUND STATE SOLUTION FOR A KIRCHHOFF TYPE EQUATION WITH CRITICAL GROWTH

  • Chen, Caixia;Qian, Aixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.961-977
    • /
    • 2022
  • In this paper, we consider the following Kirchhoff type equation on the whole space $$\{-(a+b{\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}\;{\mid}{\nabla}u{\mid}^2dx){\Delta}u=u^5+{\lambda}k(x)g(u),\;x{\in}{\mathbb{R}}^3,\\u{\in}{\mathcal{D}}^{1,2}({\mathbb{R}}^3),$$ where λ > 0 is a real number and k, g satisfy some conditions. We mainly investigate the existence of ground state solution via variational method and concentration-compactness principle.

SOLUTION AND STABILITY OF A GENERAL QUADRATIC FUNCTIONAL EQUATION IN TWO VARIABLES

  • LEE, EUN HWI;LEE, JO SEUNG
    • Honam Mathematical Journal
    • /
    • v.26 no.1
    • /
    • pp.45-59
    • /
    • 2004
  • In this paper we obtain the general solution the functional equation $a^2f(\frac{x-2y}{a})+f(x)+2f(y)=2a^2f(\frac{x-y}{a})+f(2y).$ The type of the solution of this equation is Q(x)+A(x)+C, where Q(x), A(x) and C are quadratic, additive and constant, respectively. Also we prove the stability of this equation in the spirit of Hyers, Ulam, Rassias and $G\check{a}vruta$.

  • PDF

ON A SYMMETRIC FUNCTIONAL EQUATION

  • Chung, Jae-Young
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.375-379
    • /
    • 2012
  • We find a general solution $f:G{\rightarrow}G$ of the symmetric functional equation $$x+f(y+f(x))=y+f(x+f(y)),\;f(0)=0$$ where G is a 2-divisible abelian group. We also prove that there exists no measurable solution $f:\mathbb{R}{\rightarrow}\mathbb{R}$ of the equation. We also find the continuous solutions $f:\mathbb{C}{\rightarrow}\mathbb{C}$ of the equation.