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ON A SYMMETRIC FUNCTIONAL EQUATION

Jae-Young Chung

Abstract. We find a general solution f : G → G of the symmetric

functional equation

x + f(y + f(x)) = y + f(x + f(y)), f(0) = 0

where G is a 2-divisible abelian group. We also prove that there

exists no measurable solution f : R → R of the equation. We also

find the continuous solutions f : C → C of the equation.

1. Introduction

In [3], Marcin E. Kuczma introduced the functional equation

(1.1) x+ g(y + f(x)) = y + g(x+ f(y))

which arises while studying a problem of compatibility of means. In

particular, he obtained analytic solutions f, g : R → R of the equation

(1.1). In [2], Nicole Brillouët-Belluot refined the result and find the

differentiable solution of the equation (1.1). In the paper, it is also

proved that the functional equation

(1.2) x+ f(y + f(x)) = y + f(x+ f(y)), f(0) = 0

has no differentiable solution f : R → R. In the present paper we

prove, with a different approach from those in [2], that there exist no

measurable solutions f : R → R of the equation (1.2). As a matter

of fact we find a general solution of the equation (1.2) for the function
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f : G→ G when G is a 2-divisible abelian group. As a consequence we

find a continuous solution f : C→ C of the equation (1.2).

2. Main theorems

We denote by G a 2-divisible abelian group with identity 0 and f :

G→ G. We first consider the functional equation

(2.1) x+ f(y + f(x)) = y + f(x+ f(y)), f(0) = 0

for all x ∈ G. We say that f is additive provided that

(2.2) f(x+ y) = f(x) + f(y)

for all x, y ∈ G.

Theorem 2.1. Let f satisfy (2.1). Then f is an additive function

satisfying

(2.3) f(f(x)) = f(x)− x

for all x, y ∈ G. Conversely, if an additive function f satisfies (2.3), then

f satisfies (2.1).

Proof. Letting y = 0 in (2.1) we get (2.3). Replacing x by f(x) in

(2.3) we have

(2.4) f(f(f(x))) = f(f(x))− f(x) = −x

Replacing x by f(f(x)) in (2.1) and using (2.4) and (2.3) we have

(2.5) f(f(y)+f(f(x))) = f(f(x))+f(y−x)−y = f(x)+f(y−x)−x−y

Replacing x by f(x) and y by f(y) in (2.1) we have

(2.6) f(x) + f(f(y) + f(f(x))) = f(y) + f(f(x) + f(f(y))).

From (2.5) and (2.6) we have

(2.7) 2f(x) + f(y − x) = 2f(y) + f(x− y).
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Letting y = 0 in (2.7) we have f(−x) = −f(x). Thus, replacing x − y
by u and y by v we have

(2.8) 2f(u+ v) = 2f(u) + 2f(v),

which implies that f is additive sinceG is 2-divisible. Conversely, assume

that f satisfies (2.2) and (2.3). Then we have

x+ f(y + f(x)) = x+ f(y) + f(f(x)) = f(y) + f(x),

y + f(x+ f(y)) = y + f(x) + f(f(y)) = f(x) + f(y).

Also, from (2.2) we have f(0) = 0. This completes the proof.

From the above result it is easy to see that there exist no regular

solutions f : R→ R of (2.1).

Corollary 2.2. The functional equation (2.1) has no solution f :

R→ R which is bounded in a set of positive measure.

Proof. Let f : R→ R satisfy (2.1). Then by Theorem 2.1, f satisfies

(2.2) and (2.3). It is well known that every solution f : R→ R of (2.2),

which is bounded in a set of positive measure, has the form f(x) = ax

for some a ∈ R([1]). By (2.3) we have a2 = a − 1. Thus a is not a real

number. This completes the proof.

Remark. The Corollary 2.2 implies there are no measurable (con-

tinuous, increasing, and so on) function f : R→ R satisfying (2.1).

Now we find a continuous solution f : C→ C of the equation (2.1).

Corollary 2.3. The continuous solution f : C → C of the equation

(2.1) has the form

(2.9) f(z) =

(
1

2
± i
√

3

4
+ |β|2

)
z + βz̄

for some constant β ∈ C.
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Proof. Let f(z) = g(z) + ih(z), g(z), h(z) ∈ R satisfy (2.1). Then by

Theorem 2.1, both g and h are additive since f is additive. Let z =

x+ iy, x, y ∈ R and g1(x) = g(x), g2(y) = g(iy), h1(x) = h(x), h2(y) =

h(iy). Then g1, g2, h1, h2 are all continuous additive function. By the

well known fact([1]), we obtain

g1(x) = a1x, g2(y) = a2y, h1(x) = b1x, h2(y) = b2y

for some a1, a2, b1, b2 ∈ R. Now we have

f(z) = g(z) + ih(z) = g(x) + g(iy) + ih(x) + ih(iy)

= (a1 + ib1)x+ (a2 + ib2)y

= αz + βz̄

for some α, β ∈ C. Now from the equation

f(f(z)) = f(z)− z

we have for all z ∈ C,

(α2 − α+ 1 + |β|2)z = −β(α+ ᾱ− 1)z̄,

which implies

α2 − α+ 1 + |β|2 = −β(α+ ᾱ− 1) = 0.

Thus we have

α =
1

2
± i
√

3

4
+ |β|2.

This completes the proof.
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