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THE REFLECTION OF SOLUTIONS OF
HELMHOLTZ EQUATION AND AN APPLICATION

KiHyunN YuN

ABSTRACT. It is the purpose of this paper to study the reflection of
solutions of Helmholtz equation with Neumann boundary data. In
detail let % be a solution of Helmholtz equation in the exterior of a
ball in R* with exterior Neumann data 8,1 = 0 on the boundary of
the ball. We prove that u can be extended to R® except the center
of the ball. As a corollary, we prove that a sound hard ball can
be identified by the scattering amplitude corresponding to a single
incident direction and a single frequency.

1. Introduction

Let D be a bounded simply connected smooth domain in R3. The
Helmholtz equation corresponding to a positive frequency k is

(1.1) Au+ku=0 in D, :=R3\D.

When D is a sound soft ball with center xg, Colton [2] proved that all
the solutions of the Helmholtz equation can be extended to R3*\{zg}
as a solution, where the sound soft obstacle means that the solution u
satisfies the Dirichlet boundary condition

(1.2) u=0 on dD.

The proof in the Colton [2] is based on the solution of the Goursat prob-
lem for wave equation.

When D is a sound hard ball, in other words, the boundary condition
(1.2) is replaced by a Neumann boundary data

(1.3) du=0 on 38D
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where v is the outward normal to &D, then Goursat problem mentioned
above is not solved and there is a difficulty in applying the argument in
Colton [2]. It is the purpose of this paper to prove the following theorem.

THEOREM 1. Let D = B(zq,p) the ball of radius p with center z
and if u is a solution of the Helmholtz equation (1.1) with the exterior
Neumann boundary condition g% = 0 on 8D, then u can be extended
to a solution of Helmholtz equation in B3\ {zo}.

- We prove this theorem by careful estimating the radius of convergence
of the spherical harmonic expansion of the solution.

As a consequence of Theorem 1, we prove that the uniqueness for
the inverse scattering problem within the class of sound soft balls. In
scattering theory, the function u is assumed to be the sum of the incident
wave ' that is an entire solution of Helmholtz equation and a scattered
wave u° satisfies the Sommerfeld radiation condition

(1.4) & Vu'i(z) - ku’(z) =0 (%) as r goes to oo

where v = |z| and £ = £. In other words »° is a radiating solution.
It is well known (see the book of Colton and Kress[3]) that any u°
admits the representation of

(1.5) v exp (k7 Yuco(#) + O (le) .

The function uo is called the scattering amplitude (or the scattering
pattern) and can reconstruct u® in an exterior of a bounded domain
(see p.35 in [4]). In particular when u'(z) is the incident plane wave
exp (ikd - z) for some incident direction d € 52, u® and . admit the
representation of v®(;d} and uco(; d).

An inverse problem is to recover the obstacle from the knowledge
of its scattering amplitude .. In the case of soft obstacles, based
on eigenvalue properties, Schiffer proved [4] that if D; and Dy are two
sound-soft obstacles such that the scattering amplitudes coincide for
incident plain waves with infinite directions and one fixed wave number
k, then Dy = Ds. Moreover Colton and Sleeman found a finite number
of directions to identify the sound soft obstacle in a bounded domain by
incident plain waves with one fixed wave number k(see [4]). Based on
Colton’s theorem [2], Liu proved [9] that if D; and Dj are two sound-soft
balls such that the scattering amplitudes coincide for an incident plane
wave of one direction and one fixed wave number k, then Dy = Da.
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Since the results of Schiffer, Colton and Sleeman are based on eigen-
value properties, there is no analogue of them in the case of hard ob-
stacles. Kirsch and Kress proved (8] that if Dy and D, are two sound-
hard obstacles such that the scattering amplitudes coincide for incident
plain waves with all directions in 52 and one fixed wave number, then
Dy = D;y. We prove the uniqueness within the class of sound hard balls
by a scattering amplitude corresponding to a single incident direction
and one fixed wave number k& on Corollary 3. First of all, we propose the
results of general incident waves on Corollary 2. As it mentioned before,
this proof is based on Theorem 1 instead of Colton by (1.3). Here we
use the definitions and the notations of spherical harmonic functions in
Colton and Kress(see [4]).

COROLLARY 2. Let Dy and D, be balls. If the nonzero scattered
waves of them is the same for some incident wave ', then
(i) they must coincide. Moreover u* has an expansion with respect to
spherical wave functions of the form

o n
2. D arinlkleDY(@),
n=0m=—n
where the origin is the center of them.
(ii) If the sequence {a) are nonzero on infinite terms, then Dy = D,.

As a consequence of Corollary 2, we prove the uniqueness within the
class of sound hard balls.

COROLLARY 3. A sound hard ball can be uniquely identified by scat-
tering amplitude corresponding to a single incident direction with a sin-
gle frequency.

The following example show it impossible to identify a sound hard
all by the zero scattering wave.

EXAMPLE 4. Let vi(z) be m—n%‘x—u denoted by jo(|z]). 7§ has infinitely
many zero points. Hence we can find many sound hard balls with zero
scattered wave. Thus it is impossible to identify a sound hard ball by
the zero scattering wave in this case. Indeed an incident wave u’ with
infinite nonzero Y terms has nonzero scattered wave by the proof of
(it) of corollary 2.
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2. The proofs of theorem and corollary

We start our proofs by introducing the basic properties of spherical
Bessel functions. For a more detailed analysis we refer to Colton and
Kress [4] and Lebedev [Leb).

We look for solution to the Helmholtz equation of the form
u(z) = f(k|x|)Yn(2)
where Y, is a spherical harmonic of order n. From the differential-equa-
tion for the spherical harmonics, it follows that u solves the Helmholtz
equation provided f is a solution of the spherical Bessel differential equa-
tion
2y + 2 )+t —nn+ D)) =0.
By direct calculations, we see that for n =0,1,2,--- the functions
( I)Ptn-i-ZP
In(t) = Z 1
< 2ppll-3-- (2n+2p+1)

(2n -y
2"n'Z2Pp'( m+1)(-2n+3) - (-2n+2p+1)

Ynl(t) = —

represent solutions to the spherical Bessel differential equation. The
functions j, and ¥, are called spherical Bessel functions and spherical
Neumann functions of order n, respectively, and the linear combination

hga.l) = Jn + Wn

are known as spherical Hankel functions of the first kind of order n.
1t is well known that

Un = jn(k [z])¥n(2)
is an entire solution to Helmholtz equation and
vp () = hg)(k |z[)¥n(2)

is a radiating solution to the Helmholtz equation in R3\{0}.
From the series representation of the spherical Bessel and Neumann
functions, it is obvious that

21) () = 1_3___'5;"271“) (1+o(%)) as n — 00,
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uniformly on compact subsets of R and

(22) A= 2Brs )(”O(n))a”*""‘

EAL

uniformly on compact subsets of (0, 00). It is readily verified that both
fn=7Jnand f, = hg) satisfy the differentiation formula

(23) fn+1(t) = _tn%{t_nfn(t)}i n= ]-a 2: e

LEMMA 5. RSt (t) has no zero point.

PROOF. Assume that hg)’ (p) = 0 for some point p > 0. Consider
u(z) = hﬁll)’(|sc|)Yn(:i7) where Y,(£) is a spherical harmonic function of
order n. Then u(z) is a solution of Au +u = 0 in R*\B(0, p} with
d,u = 0 on 8B(0, p) and holds the Sommerfeld radiation condition of
k = 1. By Rellich’s lemma, u = 0 in R*\ B(0, p). This is contradiction
(See Lemma 6.1 in {6]). O

PrOOF OF THEOREM 1. Without loss of generality, we may assume
that the center of D is the origin. In other words D = B(0, p). « has an
expansion with respect to spherical wave functions of the form

oc i
w=> " Y {aljn(k|z]) + 5TRY (k|2])}Y;™(£) for © € De.
n=0m=—n

First of all, we will prove that

(2.4) ui=) " Y ars(kis) V@)

n=0m=-—n
is entire. Define the sequence uf =3, (3" aj,(k|z|)Y;(2) for
{=1,2,---. Let Ry > 0. Then by (2.1) and (2.2) there is some integer

ng such that O (%) term of j, is less then 1 in the union of intervals
L 2

[0, kRo] U [k(p+ Ro), k(p+2Ro)] U [10k(p+ Ro), 10k(p + 2Rp)} and O ()
term of hg) is less then % in the union of intervals [k(p + Fp), k(p +
2Ro))U [10k(p + Ro), 10k(p+ 2Rp)] for n > ny. Then by (2.1) and (2.2),

we have

| ajn(t) | < 10| GG (k(Ro + ¢+ p)) + RO (k(Ro + 2+ 0)) |
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or

| an'dn(kt) | < 10

aljn(10k(Ro +t + p)) + 7RG (10k(Ro + 1t + p))

for t € {0,Rp] and n > mg. Since the spherical harmonics Y;" for
m=—n,--,n n=01,2,.-- form a complete orthonormal system in
L2($?), the sequence {u}) converges to u' with respect to L*(B(0, R))-
Hence we have

(2.5) ”u:h - u‘m”HZ (BR ) <C ”U’ill - uitzl'L?(BRO) ’
Ry
by Sobolev inequality, we have

2.6 P -l NS0, o
(2.6) ””m “nz"Co,%(B%Q)—— “unl U”ZHH?(B%Q)

and since u}, — uim € C2’%(BR0):
2.7 Pl < Clluh, —u
@1 b, —uhll g (B%ﬂ) <C|u, umllcu,%(B%Q),

where C's depend only on Rp and Bg, is the ball of radius Ry with the
center origin. Hence ' is an entire solution of Helmholtz equation.
By the Neumann boundary data of (1.3), we have

m gn'(kp)
b = —al
hs'! (kp)

whete ju'(kp) = Lin(kp) and Al (ko) = EhE (kp).
Now we will prove that

— _Z Z m J(r;)(kp) h(l)(k |$|)Ym($)
n=0m=-n h‘n (

can be extended to a radiation solution of Helmholtz equation in R*\{0}.
! W' {kp) 5.(1
Define the sequence uf = —3Y . g3 e, @ —H(}%h& Nk =) Y (%)

for { =1,2,--. Then v} + uj is a solution to Helmholtz (1.1} with the
Neumann boundary condition (1.3). Let R > 10. By (2.1}, (2.2) and
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(2.3), we have
gu' (kp)RS (k J2])
RS (kp)

o KO+ O)
= j. (k L]
) o) e

(B eo(d)
n+1
1. 3(-%{))(211 +3) (1+ O(n—-ll—l)))
k(o) (1+0(3))

(—n—O(1)) |a|™*!

uniformly on compact annulus with center 0.
For convenience, we assume that ny > no,

(2.8)

(2.9)

1

I|un1 - “%”2
2(Ba\y )
T2 n
S Y aldalklz)YE)

R
- L
R n=nij+lm=—n

R mn2 n
[ X X ikl kP e
R

n=ni+lm=——n

2
|z|? dzd |z|

(2.10)

and by (2.1) we know

. _ (K=" 1
(2.11) n(k|z]) = 13 @2n 1) 1+0 - as n — 00.
On the other hand, let RB; > g+ 10.

2
”’u’ftl_u;z”
L2(BRI\BR1T)
. 2
:f&/ i Zn: am]”!(kp)hs‘l)(kl“:“lf’"(sﬁ) |z diid |2
n n
RLI 52 n=n1+1lm=—n hﬂ('ll)’(k )
Ry 2 ng n . (1} 2
m dn’ (kp)hs” (k |z|)
(2.12):4_]3 S e 2l d 2]
1

R (k)

n=n1+lm=-n
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uniformly on compact annulus with center 0.
Let R = max (mpz R, 10’—}). Then we have Bjop,\B,a 1 C Br\Bj.
1
By (2.9) and (2.11) choose ng such that O ( 1) < {5 and O(1) < gn for

ng < n on the interval [%, R). Indeed ng depends only on R;. Then by
(2.9), (2.10), (2.11), and (2.12), we obtain

8

2
2
L2 (BRl \B'RIT)

“ufbl —u
<C ||'ufn1 — uim“iz(BR\Bl) for n and.ng > nyg,
®

where C depends only R, p and k. Similar to (2.5), (2.6), and (2.7),

(uf) converges to u° in C?{ Br \B 2 ) Since R; is arbitrary, ©® can
. 3 1
be extended to a solution of Helmholtz equation in R3\{0}. O

This result is contained in the following corollary, indeed that is well-
known argument in the uniqueness of obstacles of ball type (see [7]).

PRroOF OF COROLLARY 2(i). If D; and D; have the different centers,
then by the extensions of «§ and u§ and the uniqueness of continuation,
45 can be extended in R? with the Sommerfeld condition. But this is a
contradiction for Rellich’s lemma (See Lemma 6.1 in [6]). d

ProoF OF COROLLARY 2(ii). We know that D; and Dy have the
same center. Let D = B(0,p1), D2 = B(0, p2) and

weo3 Y andr ) o)y a) for j= 1,2

n=0m=—n {l)f k )

Most of all, we will show that u is the scattered wave of D; for j =1
and 2. From the proof of theorem 1, we know that u is well defined
in R%\ {0} and holds 8,(u} +uj) = 0 on 8D; for j = 1 and 2. Now
we prove that uj holds the Sommerfeld radiation conditions. Let v be
the radiating solution to helmholiz equation (1.1} with 8, (ul +v) =0
on dD;. By the well-posedness of exterior Neummann problems, in
other words, the stability of (3.54) on Theorem 3.34 in [3], there are
a sequence {i;) and ¢ such that ;) converges to ¢ in C(8D1}, uj =
Dy; +18¢; and v = Dy +iSp when the sequence (uj) is defined in the
proof of theorem 1. Hence (uj) converges to v in C? on a subdomain of



Helmholtz equation 435

B B \D;. By the uniqueness of continuation, uj = v in R%\D;. Hence
uj *holds the Sommerfeld radiation condition for 7 =1and 2. At last,

compare [g; uf(z)Y,"(2)do(x) with [, ui(z)Y M (z)do(z). By (2.9), w

can conclude p1 = pa. D

PRrROOF OF CoOROLLARY 3. Let Dy and D2 be the sound hard balls
B(xg, po) and B(z1,p1). Assume D; and D; have the same scattering
amplitude corresponding to a single direction d € $2. Then the scatter-
ing waves of D; and D, is the same in the exterior of D) U Dj. Let ut
be exp (ik(z) - d), so called by the time harmonic acoustic plane wave
for d. Then we have

=33 (exp Gha Dl |z - ) ¥

n=0m=—-n

x Yz —xz;) for [ =0,1.

By Theorem 2.8 in [4], «* has nonzero @} at infinite terms in expansions
with respect to spherical wave function for zg and z; and by (2.9} the
scattering waves are nonzero. Hence by corollary 2 we have Dy = D,

a
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