• Title/Summary/Keyword: material factors

Search Result 4,103, Processing Time 0.03 seconds

The Characteristics of VOCs and Formaldehyde emitted from the furnitures and frame material of windows and doors (가구 및 목창호재에서 방출되는 유해화학물질의 특성)

  • Park, Yong-Seung;Yoo, Bok-Hee;Cho, Hyun;Hong, Cheon-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2004.11a
    • /
    • pp.315-318
    • /
    • 2004
  • In recent days, IAQ(Indoor Air Quality) is regarded as one of the most important environmental factors as well as thermal and acoustic comfort. The purpose of this study was to estimate on effect of indoor air pollution from VOCs and formaldehyde emitted by building materials. As the results, we knew that concentration of Toluene, Xylene, Styrene and HCHO emitted from the furnitures and frame material of windows and doors are high emission factors on indoor air pollution.

  • PDF

A Study on Select Bearing Position of High Speed Spindle Considering the Thermo Behavior (주축의 열변위를 고려한 초고속 스핀들의 베어링 위치 선정)

  • Park, Su-Seong;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.767-772
    • /
    • 2011
  • The thermal deformation of machine tool spindle influences the performance of the manufacturing systems for precision products. According to previous studies, major factors that will affect the stiffness of the spindle include spindle diameter, elasticity of the material, bearing stiffness and bearing span. It is difficult to change spindle diameter or elasticity of the material. but change of bearing position is easy in the given range compared to other factors. In this paper, we will find a solution to minimize thermal deformation through Change the span of the bearing.

Determination of Optimal Cutting Conditions Based on the Relationship between Tool Grade and Workpiece Material (피삭재와 공구재종의 상관관계에 근거한 적정 절삭조건의 결정)

  • 한동원;고성림;이건우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.79-89
    • /
    • 1998
  • In determining optimal cutting condition for face milling operation, tool wear is an important factor. For the purpose of establishing the relationship between various machining factors and tool wear, cutting tests have been performed. As a result, hardness and chemical composition of workpiece material, chemical composition and grain size of cutting tool and cutting speed have been selected as machining factors. In addition, relationship between feed rate and workpiece hardness has been observed. Prior to utilizing cutting conditions recommended by ‘Machining Data Handbook(MDH)’ as a knowledge base, an analysis for the validity of the MDH has been provided. Based on this analysis, tool life criteria applied by MDH has been modified. Finally, using MDH recommended data for neural network trainning, the results from the trained neural network for optimal cutting condition for some given workpiece and cutting tool can be used as reference cutting conditions.

  • PDF

Friction characteristics of sheets for the Die Temperature and the Treating Conditions (금형의 온도와 처리 상태에 따른 판재의 마찰특성)

  • 송광헌;이재동;최이천;서대교
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.245-251
    • /
    • 1999
  • In this study, the experimental considerations of the friction factors are presented in a few cases. The friction factors in the cases of, first, the drawing quality material, SPC3C through the non-coated die of base material. GC30, secondly, SPCC through the Cr-coated GC30 die, and lastly. SPCC through the TD heat treated STD11 die, are measured experimentally both for the increasing die temperature and the blank holding forces. The results show no considerable variations of the value of friction coefficients according to the change of both the die temperature and the die treating conditions.

  • PDF

Neural Network Models of Oxide Film Etch Process for Via Contact Formation (Via Contact 형성을 위한 산화막 식각공정의 신경망 모델)

  • 박종문;권성구;박건식;유성욱;배윤구;김병환;권광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.7-14
    • /
    • 2002
  • In this paper, neutral networks are used to build models of oxide film etched In CHF$_3$/CF$_4$ with a magnetically enhanced reactive ion etcher(MERIE). A statistical 2$\^$4-1/ experimental design plus one center point was used to characterize relationships between process factors and etch responses. The factors that were varied include radio frequence(rf) power, pressure, CHF$_3$ and CF$_4$ flow rates. Resultant 9 experiments were used to train neural networks and trained networks were subsequently tested on its appropriateness using additionally conducted 8 experiments. A total of 17 experiments were thus conducted for this modeling. The etch responses modeled are dc bias voltage, etch rate and etch uniformity A qualitative, good agreement was obtained between predicted and observed behaviors.

Reformation of Dielectric Property in interface between epoxy and Cu (Epoxy-Cu간 접촉면에서의 절연특성 개선)

  • 송재주;김성홍;정남성;황종선;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.9-12
    • /
    • 2000
  • Insulators for high-voltage and large-power should be endured mechanically the weight of mold bushing itself and the force of pushed from contact with circuit breaker and conductor. But dielectric breakdown could be occurred result from the external circumstances and internal factors such as chemical reaction, partial discharge, change of temperature and the relation of temperature-time in process of casting. Therefore, to get rid of external and internal factors of dielectric breakdown. Furthermore, to prevent the internal cracks, void, cavity which resulted from the contraction originated on the interface between copper and epoxy resin, formed semi-conductive layer with partially carbon painted on copper bar. The PD properties and the insulation qualities of epoxy molded insulators were improved by roles of cushions for the direction of diameter and natural sliding effects as like separated from conductor for the direction of length.

  • PDF

Neural network modeling of Pretilt Angle on the Homogeneous Polyimide Surface (신경망을 이용한 공정변수에 따른 수평 폴리머 표면의 경사각에 관한 연구)

  • Lee, Jung-Hwan;Ko, Young-Don;Kang, Hee-Jin;Seo, Dae-Shik;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.426-427
    • /
    • 2006
  • In this paper, the neural network model of the pretilt angle in the nematic liquid crystal on the homogeneous polyimide surface with different surface treatments is investigated. The pretilt angle is one of the main factors to determine the alignment of the liquid crystal display. The pretilt angle is measured to analyze the variation of the characteristics on the various process conditions. The rubbing strength and the hard baking temperature are considered as input factors. Latin hypercube sampling was used to generate initial weights and biases.

  • PDF

Analysis of Influence Factors on Dynamic Properties of Floor Impact Noise Insulation Materials (바닥충격음 완충재의 동적특성에 영향을 미치는 요인 분석)

  • Kim, Heung-Sik;Joo, Si-Woong;Kim, Dae-Jun;Kim, Byeung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.946-949
    • /
    • 2005
  • In this paper, influence factors on dynamic properties of floor impact noise insulation materials are suggested. For this purpose measurements on the dynamic stiffness and the loss factor of resilient materials are carried out by Korea standard (KS F 2868) according to the change of density, thickness, design pattern, and composition of materials. As a result the values of dynamic stiffness was decreased at high density and thick thickness, and that of loss factor was increased at low density. For dynamic properties, the pattern of lattice and waffle type material is better than that of plat type, and the mixed composition of materials is better than the composition of double layer materials at same thickness.

  • PDF

Numerical Analysis of CO2-Based Rapid Mold Cooling Technology (CO2 기반 금형 급속 냉각기술의 수치해석적 연구 )

  • Jae Hyuk Choi
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we developed a simulation methodology for a technology that rapidly cools molds by directly spraying them with CO2 in its liquefied gaseous state. Initially, a simulation verification process was conducted using ANSYS Fluent's heat transfer analysis based on temperature values measured in prior research experiments, ensuring a comparable temperature could be calculated. Subsequently, the validated analysis method was employed to evaluate design factors that exert the most significant influence on cooling. An evaluation was conducted based on three factors: part thickness, mold thickness, and the melting temperature of material. Using a full factorial design approach, a total of 27 analyses were completed and subsequently calculated through analysis of means. The impact assessment was carried out based on the temperature values at the product's core. The results indicated that the thickness of the mold had the highest influence, while the melting temperature of material had the least.

A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position

  • Merazi, M.;Hadji, L.;Daouadji, T.H.;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.305-321
    • /
    • 2015
  • In this paper, a new hyperbolic shear deformation plate theory based on neutral surface position is developed for the static analysis of functionally graded plates (FGPs). The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present new hyperbolic shear deformation plate theory and the neutral surface concept, the governing equations of equilibrium are derived from the principle of virtual displacements. Numerical illustrations concern flexural behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.