• Title/Summary/Keyword: mass sensing

Search Result 210, Processing Time 0.026 seconds

Spatial distribution of pigment concentration around the East Korean Warm Current region derived from Satellite data

  • Kim, Sang-Woo;Kim, Young-Seup;Yoon, Hong-Joo;Saitoh, Sei-ich
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.655-655
    • /
    • 2002
  • Spatial distribution of phytoplankton pigment concentration (PPC) and sea surface temperature (SST) around the East Korean Warm Current (EKWC) was described, using both ocean color images and advanced very high resolution radiometer (AVHRR) images. Water mass in this region can be classified into five categories in the horizontal profile of PPC and SST, nLw(normalized water-leaving radiance) images: (1) coastal cold water region associated with concentrations of dissolved organic material or yellow colored substances and suspended sediments, (2) cold water region of thermal frontal occurred by a combination of phytoplankton absorption and suspended materials, (3) warm water overlay region by the phytoplankton absorption than the suspended materials; (4) warm water region occurred by the low phytoplankton absorption, and (5) offshore region occurred by the high phytoplankton absorption. In particular, the highest PPC area appeared in the ocean color and SST images with a band shaped distribution of the thermal front and ocean color front region, which is located the coastal cold waters along western thermal front of the warm streamer of the EKWC.

  • PDF

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

A comprehensive optimization model for integrated solid waste management system: A case study

  • Paul, Koushik;Chattopadhyay, Subhasish;Dutta, Amit;Krishna, Akhouri P.;Ray, Subhabrata
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.220-237
    • /
    • 2019
  • Solid waste management (SWM) is one of the poorly rendered services in developing countries - limited resources, increasing population, rapid urbanization and application of outdated systems leads to inefficiency. Lack of proper planning and inadequate data regarding solid waste generation and collection compound the SWM problem. Decision makers need to formulate solutions that consider multiple goals and strategies. Given the large number of available options for SWM and the inter-relationships among these options, identifying SWM strategies that satisfy economic or environmental objectives is a complex task. The paper develops a mathematical model for a municipal Integrated SWM system, taking into account waste generation rates, composition, transportation modes, processing techniques, revenues from waste processing, simulating waste management as closely as possible. The constraints include those linking waste flows and mass balance, processing plants capacity, landfill capacity, transport vehicle capacity and number of trips. The linear programming model integrating different functional elements was solved by LINGO optimization software and various possible waste management options were considered during analysis. The model thus serves as decision support tool to evaluate various waste management alternatives and obtain the least-cost combination of technologies for handling, treatment and disposal of solid waste.

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

Estimation of Annual Variation of Ice Extent and Flow Velocity of Campbell Glacier in East Antarctica Using COSMO-SkyMed SAR Images (COSMO-SkyMed SAR 영상을 이용한 동남극 Campbell 빙하의 연간 면적변화 및 유속 추정)

  • Han, Hyangsun;Ji, Younghun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2013
  • Campbell Glacier in East Antarctica is one of the major glaciers that flow into Terra Nova Bay. It is necessary to estimate accurate extent and flow velocity of Campbell Glacier which influences the dynamics of mass balance of East Antarctic Ice Sheet. However, few studies on Campbell Glacier have been performed since 1990s. In this study, we obtained a total of 59 COSMO-SkyMed SAR images over Campbell Glacier from June 2010 to January 2012. We estimated variations in the extent of Campbell Glacier Tongue and flow velocity of Campbell Glacier by applying the image digitizing and the offset tracking by image matching. Although the extent of Campbell Glacier Tongue decreased in summertime due to ice calving and increased in wintertime, the variation in the extent was very small. Campbell Glacier Tongue retained mean extent of 75.5 $km^2$. The ice discharge of Campbell Glacier Tongue was estimated to be $0.58{\pm}0.12km^3/yr$, which was bigger than in 1989. The flow velocity over Campbell Glacier Tongue was estimated to be from 181 to 268 m/yr that was faster than in 1988-1989, which contributed to the increase in the ice discharge of the glacier.

Validation of OMI HCHO with EOF and SVD over Tropical Africa (EOF와 SVD을 이용한 아프리카 지역에서 관측된 OMI HCHO 자료의 검증)

  • Kim, J.H.;Baek, K.H.;Kim, S.M.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.417-430
    • /
    • 2014
  • We have found an error in the operational OMI HCHO columns, and corrected it by applying a background parameterization derived on a 4th order polynomial fit to the time series of monthly average OMI HCHO data. The corrected OMI HCHO agrees with this understanding as well as with the other sensors measurements and has no unrealistic trends. A new scientific approach, statistical analyses with EOF and SVD, was adapted to reanalyze the consistency of the corrected OMI HCHO with other satellite measurements of HCHO, CO, $NO_2$, and fire counts over Africa. The EOF and SVD analyses with MOPITT CO, OMI $NO_2$, SCIAMAHCY, and OMI HCHO show the overall spatial and temporal pattern consistent with those of biomass burning over these regions. However, some discrepancies were observed from OMI HCHO over northern equatorial Africa during the northern biomass burning seasons: The maximum HCHO was found further downwind from where maximum fire counts occur and the minimum was found in January when biomass burning is strongest. The statistical analysis revealed that the influence of biogenic activity on HCHO wasn't strong enough to cause the discrepancies, but it is caused by the error in OMI HCHO from using the wrong Air Mass Factor (AMF) associated with biomass burning aerosol. If the error is properly taken into consideration, the biomass burning is the strongest source of HCHO seasonality over the regions. This study suggested that the statistical tools are a very efficient method for evaluating satellite data.

Comparison of Nitrogen Dioxide Retrieved by MAX-DOAS and OMI measurements in Seoul (지상원격측정 MAX-DOAS 시스템과 위성 OMI센서로 서울에서 산출된 이산화질소 층적분농도의 비교연구)

  • Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.235-241
    • /
    • 2013
  • $NO_2$ vertical column densities were retrieved via ground based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements for the first time for 6 months over the spring season in 2007 and 2008 in Seoul, one the megacities in the Northeast Asia. The retrieved $NO_2$ vertical column densities were compared with those obtained from space borneOzone Monitoring Instrument (OMI). Over the entire measurement period, the $NO_2$ vertical column densities measured by MAX-DOAS ranged from $1.0{\times}10^{15}molec{\cdot}cm^{-2}$ to $6.0{\times}10^{16}molec{\cdot}cm^{-2}$ while those obtained by OMI ranged $1.0{\times}10^{15}molec{\cdot}cm^{-2}$ to $7.0{\times}10^{16}molec{\cdot}cm^{-2}$. The correlation coefficient between $NO_2$ vertical column densities obtained from MAX-DOAS and OMI is 0.73 for the entire measurement period whereas the correlation coefficient of 0.85 is found for the dates under the clear sky condition. The cloudy condition is thought to play a major role in increase in uncertainty of the retrieved OMI $NO_2$ vertical column densities since air mass factor may induce high uncertainty due to the lack of cloud and aerosol vertical distribution information.

Grounding Line of Campbell Glacier in Ross Sea Derived from High-Resolution Digital Elevation Model (고해상도 DEM을 활용한 로스해 Campbell 빙하의 지반접지선 추정)

  • Kim, Seung Hee;Kim, Duk-jin;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.545-552
    • /
    • 2018
  • Grounding line is used as evidence of the mass balance showing the vulnerability of Antarctic glaciers and ice shelves. In this research, we utilized a high resolution digital elevation model of glacier surface derived by recently launched satellites to estimate the position of grounding line of Campbell Glacier in East Antarctica. TanDEM-X and TerraSAR-X data in single-pass interferometry mode were acquired on June 21, 2013 and September 10, 2016 and CryoSat-2 radar altimeter data were acquired within 15 days from the acquisition date of TanDEM-X. The datasets were combined to generate a high resolution digital elevation model which was used to estimate the grounding line position. During the 3 years of observation, there weren't any significant changes in grounding line position. Since the average density of ice used in estimating grounding line is not accurately known, the variations of the grounding line was analyzed with respect to the density of ice. There was a spatial difference from the grounding line estimated by DDInSAR whereas the estimated grounding line using the characteristics of the surface of the optical satellite images agreed well when the ice column density was about $880kg/m^3$. Although the reliability of the results depends on the vertical accuracy of the bathymetry in this study, the hydrostatic ice thickness has greater influence on the grounding line estimation.

Preparation of Bio-Chemical Sensor Electrodes by Using Electrical Impedance Properties of Carbon Nanotube Based Bulk Materials (탄소나노튜브 기반 벌크 소재의 전기적 임피던스 특성을 이용한 생화학 센서용 전극 개발 연구)

  • So, Dae-Sup;Huh, Hoon;Kim, Hee-Jin;Lee, Hai-Won;Kang, In-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.495-499
    • /
    • 2010
  • To develop chemical and biosensors, this paper studies sensing characteristics of bulk carbon nanotube (CNT) electrodes by means of their electrical impedance properties due to their large surface area and excellence chemical absorptivity. The sensors were fabricated in the form of film and nano web style by using composite process for mass production. The bulk composite electrodes were fabricated with singlewall and multi-wall carbon nanotubes based on host polymers such as Nafion and PAN, using a solution-casting and an electrospinning technique. The resistance and the capacitance of electrodes were measured with LCR meter under the various amounts of buffer solution to study the electrical impedance change properties of them. On the experimental of sensor electrode, impedance characteristics of the composite electrode are affected by its host polymer and nanofiller and its sensing response showed saturated result after applying some amounts of buffer solution for test chemical. Especially, the capacitance values showed drastic changes while the resistance values only changed within few percent range. It is deduced that the ions in the solution penetrated and diffused into the electrodes surface changed the electrical properties of the electrodes much like a doping effect.

Investigation of SO2 effect on OMI-TOMS and OMI-DOAS O3 in volcanic areas with OMI satellite data (OMI 위성자료를 이용한 화산지역 고농도 이산화황 환경에서의 TOMS 오존과 DOAS 오존의 비교연구)

  • Choi, Wonei;Hong, Hyunkee;Park, Junsung;Kim, Daewon;Yeo, Jaeho;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.599-608
    • /
    • 2015
  • In this present study, we quantified the $SO_2$ effect on $O_3$ retrieval from the Ozone Monitoring Instrument (OMI) measurement. The difference between OMI-Total Ozone Mapping Spectrometer (TOMS) and OMI-Differential Optical Absorption Spectrometer (DOAS) total $O_3$ is calculated in high $SO_2$ volcanic plume on several volcanic eruptions (Anatahan, La Cumbre, Sierra Negra, and Piton) from 2005 through 2008. There is a certain correlation ($R{\geq}0.5$) between the difference and $OMI-SO_2$ in volcanic plumes and the significant difference close to 100 DU. The high $SO_2$ condition found to affect TOMS $O_3$ retrieval significantly due to a strong $SO_2$ absorption at the TOMS $O_3$ retrieval wavelengths. Besides, we calculated the difference against various $SO_2$ levels. There is the considerable difference (average = 32.9 DU; standard deviation = 13.5 DU) in the high $OMI-SO_2$ condition ($OMI-SO_2{\geq}7.0DU$). We also found that the rate of change in the difference per 1.0 DU change in middle troposphere (TRM) and upper troposphere and stratosphere (STL) $SO_2$ columns are 3.9 DU and 4.9 DU, respectively.