Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Alavi, A.H., Hasni, H., Lajnef, N., Chatti, K. and Faridazar, F. (2016), "An intelligent structural damage detection approach based on self-powered wireless sensor data", Automat. Constr., 62, 24-44. https://doi.org/10.1016/j.autcon.2015.10.001
- Auge, L.J. (2003), "Structural magnetic induction dampers in buildings", Master thesis, Massachusetts Institute of Technology, USA.
- Cao, M. and Zuo, L. (2014), "Energy harvesting from building seismic isolation with multi-mode resonant shunt circuits", Proceedings of the ASME, San Antonio, TX, USA.
- Casciati, F. and Rossi, R. (2007), "A power harvester for wireless sensing applications", Struct. Control Health., 14(4), 649-659. https://doi.org/10.1002/stc.179
- Clough, R.W. and Penzien, J. (1993), Dynamics of structures, 2nd Ed., McGraw-Hill.
- Dissertation, California Institute of Technology, Pasadena, California, USA.
- Elvin, N.G., Lajnef, N. and Elvin, A.A. (2006), "Feasibility of structural monitoring with vibration powered sensors", Smart Mater. Struct., 15(4), 977-986. https://doi.org/10.1088/0964-1726/15/4/011
- GB. (2010), "Code for seismic design of buildings", GB50011-2010, Beijing, China.
- Harb, A. (2011), "Energy harvesting: State-of-the-art", Renew. Energ., 36(10), 2641-2654. https://doi.org/10.1016/j.renene.2010.06.014
- Jung, H.J., Jang, D.D., Lee, H.J., Lee, I.W. and Cho, S.W. (2010), "Feasibility test of adaptive passive control system using MR fluid damper with electromagnetic induction part", J. Eng. Mech. - ASCE, 136(2), 254-259. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:2(254)
- Jung, H.J., Kim, I.H. and Jang, S.J. (2011), "An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node", Smart Mater. Struct., 20(7), 075001. https://doi.org/10.1088/0964-1726/20/7/075001
- Jung, H.J., Park, J. and Kim, I.H. (2012), "Investigation of applicability of electromagnetic energy harvesting system to inclined stay cable under wind load", IEEE T. Magn., 48(11), 3478-3481. https://doi.org/10.1109/TMAG.2012.2202889
- Kim, I.H., Jang, S.J. and Jung, H.J. (2013), "Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable", Smart Mater. Struct., 22(7), 075004. https://doi.org/10.1088/0964-1726/22/7/075004
- Lajnef, N., Chakrabartty, S. and Elvin, N. (2008), "A Piezo-powered Floating-gate Sensor Array for Long-term Fatigue Monitoring in Biomechanical Implants", IEEE Trans. Biomed. Circuits Syst.,2(3)164-172. https://doi.org/10.1109/TBCAS.2008.2001473
- Langley, R. (2014), "A general mass law for broadband energy harvesting", J. Sound Vib., 333(3), 927-936. https://doi.org/10.1016/j.jsv.2013.09.036
- Lefeuvre, E., Audigier, D., Richard, C. and Guyomar, D. (2007), "Buck-boost converter for sensorless power optimization of piezoelectric energy harvester", IEEE T. Power Electr., 22(5), 2018-2025. https://doi.org/10.1109/TPEL.2007.904230
- Lefeuvre, E., Badel, A., Richard, C., Petit, L. and Guyomar, D. (2006), "A comparison between several vibration-powered piezoelectric generators for standalone systems", Sensor. Actuat. A: Phys., 126(2), 405-416. https://doi.org/10.1016/j.sna.2005.10.043
- Lei, Y., Tang, Y.L., Wang, J.X., Jiang, Y.Q. and Luo, Y. (2012), "Intelligent monitoring of multistory buildings under unknown earthquake excitation by a wireless sensor network", Int. J. Distrib. Sens. N., 2012, 914638.
- Liang, J.R. and Liao, W.H. (2009), "Piezoelectric energy harvesting and dissipation on structural damping", J. Intel. Mat. Syst. Str., 20(5), 515-527. https://doi.org/10.1177/1045389X08098194
- Lu, Q., Loong, C., Chang, C.C. and Dimitrakopoulos, E.G. (2014), "Scavenging vibration energy from seismically-isolated bridges using an electromagnetic harvester", Proceedings of the SPIE, 906101-1, San Diego, California, USA.
- Lynch, J.P. and Loh, K.J. (2006), "A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring", Shock Vib. Digest, 38(2), 91-128. https://doi.org/10.1177/0583102406061499
- Mahlknecht, S. (2004), "Energy-self-sufficient wireless sensor networks for the home and building environment", Ph.D. Dissertation, Universitat von Pretoria, Wien.
- Mitcheson, P.D. (2005), "Analysis and Optimisation of Energy-Harvesting Micro-Generator Systems", Ph.D. Dissertation, Imperial College London, London.
- Mitcheson, P.D., Green, T.C., Yeatman, E.M. and Holmes, A.S. (2004), "Architectures for vibration-driven micropower generators", J. Microelectromech. S., 13(3), 429-440. https://doi.org/10.1109/JMEMS.2004.830151
- Park, G., Rosing, T., Todd, M.D., Farrar, C.R. and Hodgkiss, W. (2008), "Energy harvesting for structural health monitoring sensor networks", J. Infrastruct. Syst., 14(1), 64-79. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(64)
- Ramadan, K.S., Sameoto, D. and Evoy, S. (2014), "A review of piezoelectric polymers as functional materials for electromechanical transducers", Smart Mater. Struct., 23(3), 033001. https://doi.org/10.1088/0964-1726/23/3/033001
- Rhimi, M. and Lajnef, N. (2012), "Tunable energy harvesting from ambient vibrations in civil structures", J. Energ. Eng., 138(4), 185-193. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000077
- Rice, J.A. and Spencer, B.F. (2008), "Structural health monitoring sensor development for the Imote2 platform", Proceedings of the SPIE, San Diego, California, USA.
- Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes" Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
- Sapinski, B. (2011), "Experimental study of a self-powered and sensing MR-damper-based vibration control system", Smart Mater. Struct., 20(10), 105007. https://doi.org/10.1088/0964-1726/20/10/105007
- Sazonov, E., Li, H., Curry, D. and Pillay, P. (2009), "Self-powered sensors for monitoring of highway bridges", IEEE Sens. J., 9(11), 1422-1429. https://doi.org/10.1109/JSEN.2009.2019333
- Scruggs, J.T. (1999), "Active, regenerative control of civil structures", Master Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
- Scruggs, J.T. (2004), "Structural control using regenerative force actuation networks", Ph.D. Dissertation, California Institute of Technology, Pasadena, California, USA.
- Scruggs, J.T. and Iwan, W. (2005), "Structural control with regenerative force actuation networks", Struct. Control Health., 12(1), 25-45. https://doi.org/10.1002/stc.50
- Shen, W. (2014), "Electromagnetic damping and energy harvesting devices in civil structures", Ph.D. Dissertation, The Hong Kong Polytechnic University, Hong Kong.
- Shen, W. and Zhu, S. (2015), "Harvesting energy via electromagnetic damper: Application to bridge stay cables", J. Intel. Mat. Syst. Str., 26(1), 3-19. https://doi.org/10.1177/1045389X13519003
- Shen, W.A., Lei, Y., Hu, L. and Wang, Y. (2012), "Feasibility of output-only modal identification using wireless sensor network: A quantitative field experimental study", Int. J. Distrib. Sens. N., 2012:560161.
- Shen, W.A., Zhu, S. and Xu, Y.L. (2012), "An experimental study on self-powered vibration control and monitoring system using electromagnetic TMD and wireless sensors", Sensor. Actuat. A: Phys., 180(2012), 166-176. https://doi.org/10.1016/j.sna.2012.04.011
- Soong, T.T. and Grigoriu, M. (1993), "Random vibration of mechanical and structural systems", PTR Prentice Hall.
- Spencer, B.F., Cho, S. and Sim, S.H. (2011), "Wireless monitoring of civil infrastructure comes of age", Struct. Mag., 12-16.
- Torfs, T., Sterken, T., Brebels, S., Santana, J., van den Hoven, R., Spiering, V., Bertsch, N., Trapani D. and Zonta, D. (2013), "Low power wireless sensor network for building monitoring", IEEE Sens. J., 13(3), 909-915. https://doi.org/10.1109/JSEN.2012.2218680
- Van Noorden, R. (2012), "New year, new science", Nature, 481(7379), 12. https://doi.org/10.1038/481012a
- Vullers, R., Schaijk, R., Visser, H., Penders, J. and Hoof, C. (2010), "Energy harvesting for autonomous wireless sensor networks", IEEE Solid-St. Circ. Mag., 2(2), 29-38. https://doi.org/10.1109/MSSC.2010.936667
- Wang, Z., Chen Z.Q. and Spencer, B.F. (2009), "Self-powered and sensing control system based on MR damper: presentation and application", Proceedings of the SPIE Smart Structures/NDE, 729240.
- Williams, C.B. and Yates, R.B. (1996), "Analysis of a micro-electric generator for microsystems", Sensor. Actuat. A: Phys., 52(1-3), 8-11. https://doi.org/10.1016/0924-4247(96)80118-X
- Yang, C.Y. (1986), "Random Vibration of Structures", John Wiley & Sons, New York.
- Zhu, S., Shen, W.A. and Xu, Y.L. (2012), "Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing", Eng. Struct., 34, 198-212. https://doi.org/10.1016/j.engstruct.2011.09.024
Cited by
- Shunt Damping Vibration Control Technology: A Review vol.7, pp.5, 2017, https://doi.org/10.3390/app7050494
- Analysis of piezoelectric energy harvester under modulated and filtered white Gaussian noise vol.104, 2018, https://doi.org/10.1016/j.ymssp.2017.10.031
- Vibration Control Design for a Plate Structure with Electrorheological ATVA Using Interval Type-2 Fuzzy System vol.7, pp.7, 2017, https://doi.org/10.3390/app7070707
- Energy regenerative tuned mass dampers in high-rise buildings vol.25, pp.2, 2018, https://doi.org/10.1002/stc.2072
- Innovative technologies in manufacturing, mechanics and smart civil infrastructure 2017, https://doi.org/10.1080/19475411.2017.1376359
- Improving low-frequency piezoelectric energy harvesting performance with novel X-structured harvesters vol.94, pp.2, 2018, https://doi.org/10.1007/s11071-018-4432-6
- Unify Energy Harvesting and Vibration Control Functions in Randomly Excited Structures with Electromagnetic Devices vol.145, pp.1, 2019, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001548
- A dual electromagnetic array with intrinsic frequency up-conversion for broadband vibrational energy harvesting vol.114, pp.5, 2019, https://doi.org/10.1063/1.5083910
- The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting vol.19, pp.6, 2017, https://doi.org/10.12989/sss.2017.19.6.665
- Self-powered hybrid electromagnetic damper for cable vibration mitigation vol.20, pp.3, 2017, https://doi.org/10.12989/sss.2017.20.3.285
- An intelligent fuzzy theory for ocean structure system analysis vol.9, pp.2, 2016, https://doi.org/10.12989/ose.2019.9.2.179
- Seismic Control of SDOF Systems with Nonlinear Eddy Current Dampers vol.9, pp.16, 2019, https://doi.org/10.3390/app9163427
- All-passive nonlinear electromagnetic metastructure for simultaneous energy harvesting and earthquake mitigation vol.129, pp.5, 2020, https://doi.org/10.1209/0295-5075/129/58004
- Intelligent fuzzy algorithm for nonlinear discrete-time systems vol.42, pp.7, 2016, https://doi.org/10.1177/0142331219891383
- LMI based criterion for reinforced concrete frame structures vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.407
- A low-cost and efficient d33-mode piezoelectric tuned mass damper with simultaneously optimized electrical and mechanical tuning vol.32, pp.6, 2016, https://doi.org/10.1177/1045389x20966056
- Experimental investigation of T-shaped piezoelectric energy harvester activating coupled transverse and shear mode vol.577, pp.1, 2016, https://doi.org/10.1080/00150193.2021.1916347
- Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications vol.8, pp.3, 2016, https://doi.org/10.1063/5.0051432